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a b s t r a c t

Heat transfer optimization principle is critically important for further explaining the underlying mecha-
nisms and guiding practical designs of heat transfer processes. Recently, the entransy theory has been
successfully used to optimize various steady-state heat transfer processes. Nevertheless, it is still an open
question whether this theory can be utilized in transient cases. Here, we examined the applicability of the
entransy analyses on the one-dimensional transient heat conduction process. It was found that the
entransy dissipation rate can neither derive the transient governing equation nor correspond to the opti-
mal result in the transient optimization problem. Therefore, an extended entransy dissipation rate was
defined as the convolution integral of heat flux and negative temperature gradient. The total extended
entransy dissipation rate over the time and space domain can correspond to the optimal result of the
transient optimization problem. Additionally, Fourier transform was used to convert the transient prob-
lem from the time domain into the frequency domain, and the total entransy dissipation rate in the fre-
quency domain will give a convenient optimization criterion that the temperature gradient field should
be spatially uniform to reach the shortest characteristic time. Also, the inverse Fourier transform of the
entransy dissipation rate in the frequency will be the extended entransy dissipation rate in the time
domain. Finally, these findings were used to optimize a practical transient heat conduction problem
for a solid thermal energy storage unit.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Heat transfer is the exchange of thermal energy between phys-
ical systems due to a temperature difference with many engineer-
ing applications, such as in refrigeration [1] and energy storage
systems [2]. Heat transfer processes should be optimized for effi-
cient, sustainable energy utilization. The heat transfer governing
equations are well established with many methods developed to
improve energy generation, consumption, and conservation based
on energy analyses [3]. However, heat transfer optimization still
needs more in-depth investigations to further explain the underly-
ing mechanisms and guide practical designs.

Bejan [4] proposed the entropy generation minimization princi-
ple for heat transfer optimization, i.e., the best heat transfer rate
corresponds to the minimum entropy generation rate. Although
the entropy generation rate has been widely used in heat transfer
optimization analyses [5–9], several counter examples to the
entropy generation minimization principle have been identified

[10–13]. This is because the total entropy generation rate cannot
be used to construct the least action principle of a heat transfer
process [14]. Minimization of the total entropy generation rate
cannot recover the fundamental heat transfer constitutive relation,
Fourier’s law [15–17]. The constitutive relation between the tem-
perature gradient and the heat flux derived from the entropy gen-
eration rate requires that the thermal conductivity be inversely
proportional to the square of the temperature; however, there is
no knownmaterial whose thermal conductivity obeys this relation,
so there is no real heat transfer problemwhere the steady state can
be optimized by minimizing the entropy generation rate.

Since the entropy generation theory has limited applications for
heat transfer optimization, Guo et al. [18,19] proposed entransy
theory. The entransy dissipation rate extremum recovers the
steady-state governing differential equation through its spatial
variation [14,20]. Thus, it can be used to construct the least action
principle (variational principle) in this case, which provides as a
simple alternative formulation of the differential equations and
can be used to develop the efficient numerical methods.
Importantly, the least action principle can be further employed
to optimize a problem for given constraints. As for heat transfer
optimization in steady state, an entransy dissipation extremum
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principle can be straightforwardly used for some relatively simple
problems such volume-point problem [20], while for some compli-
cated problems such heat exchanger networks [21], the entransy
dissipation could be used to simplify the constrains and thus facil-
itate the optimization process. Particularly, several examples about
heat transfer optimization based on the entransy theory were also
given in a review paper we have cited [19]. For instance, in the
volume-point problem, the minimum average temperature rise
should correspond to the total entransy dissipation rate extre-
mum; besides, the total entransy dissipation rate were used to
derive the optimal fluid flow and temperature fields for laminar
convective heat transfer in a circular tube.

As we stated above, the entransy theory in the present form has
been successfully utilized for steady-state heat transport process;
however, it is still an open question whether this theory could be
directly utilized in transient cases. In order to answer this question,
we need firstly examine whether the entransy dissipation rate can
derive the transient heat conduction equation, and then investigate
the applicability of the entransy dissipation rate for transient heat
transfer optimization problems.

2. Least action principle for transient heat conduction

The total entransy dissipation rate over a volume V is calculated
as

G ¼
Z
V
q � ð�rTÞdV ¼

Z
V
kðrTÞ2 dV ; ð1Þ

in which q is the heat flux, rT is the temperature gradient, and k is
the thermal conductivity. It is an integral quantity merely over the
space domain, and does not involve the influence of the time evolu-
tion. In a previous work [14], we have demonstrated the total
entransy dissipation rate can be used to construct the least action
principle and give the steady-state heat conduction governing
equation. However, this conclusion becomes invalid in transient
cases. In Finlayson’s book [17], the least action principles were sum-
marized for various transport processes including heat conduction;
it was found that for a specific transport process, the variational
function in the steady state could be different from that in the tran-
sient state. Some modifications such as convolution integral [22]
and Laplace transform [23,24] are needed to develop the variational
principles for transient transport processes. In order to find a vari-
ational function in the time domain and without introducing some
new variable, convolution integral is preferred to construct the least
action principle for transient heat conduction process. Here, follow-
ing Gurtin [17,22], we derive a variational principle for transient
heat conduction using the convolution integral. The convolution
integral of the action for the transient heat conduction equation is
given by

Lcon ¼
Z
V
ðcVqT � 2cVqT0Þ � T þ k � rT � rT dV ð2Þ

The variational of Lcon with respect to T yields

dLcon ¼ 2
Z
V
dT � ½cVqT � cVqT0 �r � ðk � rTÞ�dV ¼ 0 ð3Þ

The term in brackets can be rewritten as,

cVqT � cVqT0 �r � ðk � rTÞ ¼ cVqT � cVqT0 �
Z t

0
r � ðkrTÞds

ð4Þ
which is the time integral of the transient heat conduction equation,

cVq
@T
@t

�r � ðkrTÞ ¼ 0: ð5Þ

It is obvious that the entransy dissipation rate, Eq. (1), fails to
give the transient heat conduction equation; thus, the entransy
dissipation rate also likely becomes inapplicable for transient heat
conduction optimization. Nevertheless, when carefully analyzing
the variational function of transient heat conduction process, Eq.
(2), we find that the term,

R
V k � rT � rTdV , can be rewritten asZ

V

Z t

0
krT � rTdsdV ¼

Z
V

Z t

0
q � ð�rTÞdt dV

¼
Z
V

Z t

0

Z s

0
qðs� gÞ � ½�rTðgÞ�dgdsdV : ð6Þ

It is the integral of the convolution of heat flux and negative tem-
perature gradient over the time and space domain, which could
have a close connection to the entransy dissipation rate. Therefore,
we deduce that this quantity may be relevant to the dissipative
characteristics of the transient heat conduction process, just like
the entransy dissipation rate can reflect the dissipative characteris-
tics in steady-state cases [18]. Importantly, the influence of the time
evolution of transient transport process can be taken into account
by the convolution integral in this quantity. In addition, a transient
heat conduction process includes both the dissipating and non-
dissipating processes, and thus its variational function could
include both the dissipating and non-dissipating terms. Since
ðcVqT � 2cVqT0Þ � T in Lcon does not involve the driving force or
the flux [14], it could be the non-dissipating term.

3. Transient heat conduction optimization problem

To examine the applicability of the entransy dissipation rate for
transient heat transfer optimization, a simple transient heat
conduction optimization problem is studied in this section. The
geometry shown in Fig. 1 is a rectangular plate with an initial
uniform temperature of T0 = 300 K at t = 0. At t > 0, the right

Nomenclature

L plate length
Rt embedded tube radius
D pore axis distance
T temperature
tch characteristic time of TES unit
cV specific heat
k thermal conductivity
T temperature
h heat transfer coefficient
T0 initial temperature
Tf bulk fluid temperature

G total entropy generation rate

Greek symbols
q mass density

Subscripts
ch characteristic
x frequency domain
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