
Numerical predictions of laminar and turbulent forced convection:
Lattice Boltzmann simulations using parallel libraries

Mehaboob Basha a, Nor Azwadi Che Sidik a,b,⇑
aDepartment of Thermo-fluid, Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, Johor, Malaysia
bMalaysia – Japan International Institute of Technology (MJIIT), University Teknologi Malaysia Kuala Lumpur, Jalan Sultan Yahya Petra, 54100 Kuala Lumpur, Malaysia

a r t i c l e i n f o

Article history:
Received 6 March 2017
Received in revised form 15 September
2017
Accepted 18 September 2017
Available online 22 September 2017

Keywords:
Parallel lattice Boltzmann method
Domain-decomposition
Matlabpool
MPI
OpenMP
OpenMPI

a b s t r a c t

This paper presents the performance comparison of various parallel lattice Boltzmann codes for simula-
tion of incompressible laminar convection in 2D and 3D channels. Five different parallel libraries namely;
matlabpool, pMatlab, GPU-Matlab, OpenMP and OpenMP+OpenMPI were used to parallelize the serial
lattice Boltzmann method code. Domain decomposition method was adopted for parallelism for 2D
and 3D uniform lattice grids. Bhatnagar-Gross-Krook approximation with lattice types D2Q9, D2Q19
and D2Q5, D2Q6 were considered to solve 2D and 3D fluid flow and heat transfer respectively. Parallel
computations were conducted on a workstation and an IBM HPC cluster with 32 nodes. Laminar forced
convection in a 2D and turbulent forced convection in a 3D channels was considered as a test case. The
performance of parallel LBM codes was compared with serial LBM code. Results show that for a given
problem, parallel simulations using matlabpool and pMatlab library perform almost equal. Parallel sim-
ulations using C language with OpenMP libraries were 10 times faster than simulations involving Matlab
parallel libraries. Parallel simulations with OpenMP+OpenMPI were 0.35 times faster than the reported
parallel lattice Boltzmann method code in the literature.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

From past two decades, lattice Boltzmann method in conjunc-
tion with single relaxation collision operator [1–5] is widely used
to simulate dynamics of mesoscopic fluid flow and heat transfer
system through fictitious particles collision and redistribution on
a lattice grid with pre-defined lattice velocities. Under a low Mach
number assumption, Chapman-Enskog analysis [6] of LB equation
associates moments of equilibrium particles to physical (macro-
scopic) fluid flow variables, such as density, velocity, temperature,
etc., in Navier-Stokes equations. Easy handling of complex bound-
ary, simplicity, accuracy [7–9], etc., has led to application of LBM
for solving wide variety of fluid flow and heat transfer problems
[10–14].

However, the main disadvantage of LBM is that it is computa-
tionally intensive. For instance, LBM simulation of two and three-
dimensional fluid flow problems requires 9 and 19 lattice velocities
(D2Q9 and D3Q19) at every grid point, respectively. Moreover, for
stable and accurate LBM simulation, lattice nodes should be scaled
with Reynolds number and domain size, such that Mach number

(in lattice units) is less than 0.3. Hence, for simulation of high Rey-
nolds number fluid flow or fluid flow in large domain or both,
results in large lattice grid size (large data arrays). A serial LBM
code could take months or weeks, if not days to get converged
solution for large data arrays. Since, the moments of particles dis-
tributions functions are local in nature for calculation of fluid flow
variables, such as density, velocity, temperature, etc., paralleliza-
tion of LBM is relatively easy [7].

To improve the performance of the LBM code and to reduce the
simulation time, several techniques are proposed and imple-
mented in the literature. One of the techniques is data parallelism
[15], where large data arrays of the problem are decomposed into
several small subsets that are computed in parallel on multi-core
processor of a computer. Another technique is a grid refinement
[16], where fine grid is adopted in the critical regions, such as near
wall, high gradient regions, etc. and coarse grid is adopted in non-
critical regions of the flow domain. Use of local grid refinement or
non-uniform grid not only reduces memory size but also reduces
computational time. However, numerical error is inevitable during
interpolation of particle distribution functions in grid refinement
techniques [16].

Following is the literature review on parallel simulations using
LBM. Satofuka and Nishioka [15] used parallel technique to solve
3D incompressible turbulent flow using LBM. Derksen and Van

https://doi.org/10.1016/j.ijheatmasstransfer.2017.09.072
0017-9310/� 2017 Elsevier Ltd. All rights reserved.

⇑ Corresponding author at: Department of Thermo-fluid, Faculty of Mechanical
Engineering, Universiti Teknologi Malaysia, Johor, Malaysia.

E-mail address: azwadi@mail.fkm.utm.my (N.A.C. Sidik).

International Journal of Heat and Mass Transfer 116 (2018) 715–724

Contents lists available at ScienceDirect

International Journal of Heat and Mass Transfer

journal homepage: www.elsevier .com/locate / i jhmt

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijheatmasstransfer.2017.09.072&domain=pdf
https://doi.org/10.1016/j.ijheatmasstransfer.2017.09.072
mailto:azwadi@mail.fkm.utm.my
https://doi.org/10.1016/j.ijheatmasstransfer.2017.09.072
http://www.sciencedirect.com/science/journal/00179310
http://www.elsevier.com/locate/ijhmt


den Akker [17] performed SGS Large eddy simulations of turbulent
fluid flow in a baffled stirred tank driven by a Rushton turbine by
applying LBM. Equivalent body force was applied for representing
the action of the impeller on the fluid. The parallel simulations
were conducted on a shared-memory architecture computer.
Cherba et al. [18] presented performance analysis of a parallel 2D
LBM on various configurations of cluster computers. Results indi-
cated that increase in data precision does not affect execution time
significantly on Pentium class processors. Study also showed that
improved communication and calculation strategies can yield bet-
ter speedup and scalability. A massively parallel code for particle
suspension problems using the LBM was presented by Stratfrord
et al. [19]. This paper compares performance of the code in terms
of the computational overhead required for the particle laden flow
problem with the fluid-only problem, and for the scaling of the
code to large processor numbers. Various parallel techniques to
increase the single-CPU performance, and the impact on the paral-
lelization techniques on performance were presented by Carolin
et al. [20]. The parallel techniques were applied to solve fluid flow
involving free surfaces and also the paper discusses about the
required extensions to handle complex flow scenario. Data block-
ing parallel implementation of 2D and 3D Lattice Boltzmann
Method was presented by Claudio et al. [21]. Their results showed
that blocked parallel implementation can enhance performance up
to 31% than non-blocked versions of the LBM code. Dustin et al.
[22] performed DNS simulation of turbulent 3D periodic channel
using LBM with multiple relaxation time in collision process.
The parallel computations were conducted on 256 processors
shared memory machine using OpenMP. Computational time per
iteration was found to be less than 0.5 s for a grid size of
(91 � 181 � 1080 � 19 lattice velocities = 337984920 data-size).
Florian et al. [23] presented algorithms for non-uniform grid,
large-scale, massively parallel LB-based simulations on distributed
data structures for waLBerla software. Their algorithm on an IBM
Blue Gene/Q system, gave perfect scalability with absolute

performance of close to a trillion node updates per second, while
on an Intel-based system, an absolute performance of 8.5 million
node updates per second was obtained.

Computer languages such as C, C++ and FORTRAN are used
worldwide for coding serial and parallel LBM codes [17–22].
Recently, GPU computing with CUDA has received lot of attention
from researchers for parallel LBM simulations [24]. However, cod-
ing and debugging in the above mentioned languages is quite
tedious and time consuming task, especially, when dealing with
CUDA codes. From couples of years MATLAB is being used for tech-
nical computing due to availability of several ready-to-use built-in
libraries [25]. It can also be used for rapid prototyping of pilot codes
and then translate to C or FORTRAN code. Moreover, parallel
libraries such as Parallel toolbox inMATLAB and pMatlab by Lincoln
laboratories, MIT [26], can be used to build Parallel LBM code easily.

Therefore, the objectives of this study are to build parallel LBM
codes using Matlab parallel library and subsequently rewrite the
parallel Matlab code in C language with OpenMP and OpenMPI
libraries, and also to compare the performance of the parallel codes
with performance of serial code. As a test case, incompressible con-
vection in 2D and 3D channels is considered, in conjunction with
stable fluid flow [27] and thermal boundary conditions [10].

2. Methodology

2.2. Numerical method

Incompressible LBGK model proposed by He and Lou [7] is
adopted here. In LBM, space is discretized into uniform lattice size

of dx and velocity is discretized into finite number of velocities c
!

i to

form particle distribution functions fiðr
!
; tÞ. The LBGK evolution

equation is as follows.

fið r
!þdx c

!
i; tþ dtÞ � f ið r

!
; tÞ ¼ �Xi; Xi ¼ �xðf i � feqi Þ þ FTi ð1Þ

Nomenclature

BC boundary condition
BGK Batnaghar, Gross, Krook
c lattice velocities
CPU central processing unit
Cs speed of sound
Cp specific heat
Dh hydraulic diameter
2D two dimensional
3D three dimensional
fi, gi particle distribution function
GPU graphics processing unit
HPC high performance computing
L length of the channel
LBM lattice Boltzmann method
Ma mach number
MPI message passing interface
NS Naiver-Stokes
Np number of process
p pressure
P process
x, y, z co-ordinates
u, v, w velocities in x, y, z direction, respectively
wi lattice weights

Subscript
d dimensionless

i ith direction
id ID of processor
eq equilibrium
neq non-equilibrium
o reference condition
p process
tb turbulence

List of symbols
dx lattice size, m
dt lattice time, s
qo mean/reference density, kg/m3

x inverse of relaxation time, 1/s
l dynamic viscosity, kg m/s2

lt turbulent dynamic viscosity, kg m/s2

t kinematic viscosity, m/s2

tt turbulent kinematic viscosity, m/s2

s relaxation time, s
s� total relaxation time, s
st turbulent relaxation time, s
S strain rate tensor
P stress tensor
Pneq non-equilibrium stress tensor

716 M. Basha, N.A.C. Sidik / International Journal of Heat and Mass Transfer 116 (2018) 715–724



Download English Version:

https://daneshyari.com/en/article/4993794

Download Persian Version:

https://daneshyari.com/article/4993794

Daneshyari.com

https://daneshyari.com/en/article/4993794
https://daneshyari.com/article/4993794
https://daneshyari.com

