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a b s t r a c t

A mathematical heat transfer model in variational form is constructed for steady-state heat transfer
through an inhomogeneous anisotropic solid of arbitrary configuration. This model is used to obtain
two-sided thermal heat transfer resistance estimates for such a solid. These estimates permit calculating
the maximum possible error when approximating the thermal resistance by half the sum of these
estimates.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

The thermal heat transfer resistance between heating media
separated by device elements is a quantity characteristic that is
important when designing various heat exchange devices and
analyzing their efficiency. Note that although most existing meth-
ods for heat transfer analysis only apply to isotropic materials, the
structural elements of modern power plants and thermal protec-
tion systems also widely use anisotropic materials, including com-
posites of various structure [1–5].

The thermal resistance of heat transfer through an inhomoge-
neous anisotropic solid between surface sections experiencing con-
vective heat exchange with the ambient medium can be estimated
with the use of a mathematical model describing the steady-state
temperature distribution in the solid. A transformation of this
mathematical model permits constructing a dual variational state-
ment of the steady-state thermal conduction problem, which con-
tains two functionals dual to each other (one to be minimized and
the other to be maximized) [6–9] attaining the same extremal
value on the actual solution of the problem. The desired thermal
heat transfer resistance can be expressed via this value. However,
finding the actual temperature distribution in an anisotropic solid
of complex shape with an (in general) inhomogeneous surface
distribution of the convective heat transfer coefficient is rather dif-

ficult even with the use of numerical methods and modern hard-
ware [10,11].

The dual variational statement of the steady-state thermal
conduction problem permits obtaining guaranteed successively
tightening two-sided estimates of the desired heat transfer coeffi-
cient. These estimates may be sufficient for selecting the design
and operational parameters of a heat exchange device at the first
design stage. Since the values of the functional to be minimized
on any admissible temperature distributions are not less than its
value on the actual distribution, it follows that the former values
provide a guaranteed upper bound for the actual value of the heat
transfer coefficient. Likewise, the values of the functional to be
maximized on any admissible distributions are not greater than
its value on the actual distributions, which provides a lower bound
for the actual value of the heat transfer coefficient. These two-
sided estimates permit finding the maximum possible relative
error in the approximate value of the heat transfer coefficient cho-
sen when designing the heat exchange device.

2. Constitutive relations

Consider an inhomogeneous anisotropic solid occupying a vol-
ume V bounded by a surface S (Fig. 1). Convective heat exchange
with the ambient medium at constant temperatures T1 and T2

occurs on parts S1 � S and S2 � S, respectively, of the surface; these
parts are assumed not to be in contact with each other. The convec-
tive heat exchange intensity is determined by the heat transfer
coefficients a1ðP1Þ and a2ðP2Þ, which depend on the position of
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the points P1 2 S1 and P2 2 S2 of these parts. Heat exchange by
radiation is not taken into account. The remaining part S0 of the
surface S is perfectly thermally insulated. The thermal conductivity
of the solid is characterized by a symmetric rank 2 tensor with
temperature-independent components kijðMÞ, i; j ¼ 1;2;3; defined
in the selected rectangular Cartesian coordinate system Ox1x2x3

and depending on the coordinates of the pointM 2 V in the volume
V . This tensor can be reduced to principal axes, in which it has
diagonal form with positive eigenvalues for real materials; i.e.,
the 3� 3 symmetric matrix corresponding to this tensor is positive
definite [10].

The steady-state temperature distribution TðMÞ ðM 2 VÞ in the
closed volume V ¼ V [ S satisfies the differential equation

@

@xi
kijðMÞ @TðMÞ

@xj

� �
¼ 0; M 2 V ; ð1Þ

and the boundary conditions

kijðP1Þ @TðP1Þ
@xj

niðP1Þ þ a1ðP1ÞðTðP1Þ � T1Þ ¼ 0; P1 2 S1; ð2Þ

kijðP2Þ @TðP2Þ
@xj

niðP2Þ þ a2ðP2ÞðTðP2Þ � T2Þ ¼ 0; P2 2 S2; ð3Þ

kijðP0Þ @TðP0Þ
@xj

niðP0Þ ¼ 0; P0 2 S0 ¼ S n ðS1 [ S2Þ; ð4Þ

where the ni are the direction cosines of the outward normal to S at
the corresponding points of the surface.

Eq. (1) and the boundary conditions (2)–(4) compose a differen-
tial form of the mathematical model of a steady-state thermal con-
duction process in the solid in question.

3. Variational form of the mathematical model

Associated with the differential form (1)–(4) of the mathemat-
ical model of the steady-state thermal conduction process is the
variational form, which contains a functional to be minimized. To
construct a functional whose stationary point satisfies (1)–(4),
multiply Eq. (1) by a variation �dTðMÞ ðM 2 VÞ and integrate over
the volume V; multiply Eq. (2) by dTðP1Þ ðP1 2 S1Þ and integrate
over the part S1 of the surface S; multiply Eq. (3) by
dTðP2Þ ðP2 2 S2Þ and integrate over S2; multiply Eq. (4) by
dTðP0Þ ðP0 2 S0Þ and integrate over S0. By summing these integrals,
we obtain (the arguments of the functions are omitted)

� RV @
@xi

kij @T@xj

� �
dTdV þ RS1 kij @T@xj ni þ a1ðT � T1Þ

� �
dTdS

þ RS2 kij @T@xj ni þ a2ðT � T2Þ
� �

dTdSþ RS0 kij @T@xj nidTdS ¼ 0:

Here we apply the Gauss divergence theorem to the first inte-
gral and represent the left-hand side as the variation dJ½T; dT� of
the functional

J½T� ¼
Z
V

@T
@xi

kij
2

@T
@xj

dV þ
Z
S1

a1T
T � 2T1

2
dSþ

Z
S2

a2T
T � 2T2

2
dS:

ð5Þ
The functional (5) can be considered on the set of temperature

distributions TðMÞ, M 2 V , that are continuous in V and differen-
tiable with respect to the spatial coordinates everywhere in V pos-
sibly except on some set consisting of lines or surfaces. Admissible
temperature distributions do not necessarily satisfy the boundary
conditions (2)–(4), which are natural for this functional [12].

An analysis of the extremal properties of the functional (5)
shows [13] that it is strictly convex on the entire set of admissible
temperature distributions and attains its unique minimum at its
stationary point on the actual temperature distributions
T�ðMÞ ðM 2 �VÞ. Indeed, the integrands in the integrals over S1 and
S2 are strictly convex. The integrand in the first integral on the
right-hand side in (5) is strictly convex as well owing to the posi-
tive definiteness of the matrix corresponding to the thermal con-
ductivity tensor if the temperature gradient is a nonzero vector.
Otherwise, the zero value of this function does not affect the over-
all strict convexity of the functional.

The strict convexity of the functional (5), which is usually called
the primal functional, implies the uniqueness of its stationary
value, which is in turn equivalent to the uniqueness of the solution
of the steady-state thermal conduction problem described by the
mathematical model (1)–(4). By transforming the first integral in
(5) by Green’s first formula, which in our case has the formZ
V

@T
@xi

kij
@T
@xj

dV ¼
Z
S
Tkij

@T
@xj

nidS�
Z
V
T

@

@xi
kij

@T
@xj

� �
dV ;

one can show that the following value of the functional (5) corre-
sponds to the actual temperature distributions satisfying the differ-
ential form (1)–(4) of the mathematical model:

J½T�� ¼ � T1

2

Z
S1

aT�dS� T2

2

Z
S2

aT�dS: ð6Þ

4. Dual variational form of the mathematical model

To construct a dual functional for (5), i.e., a functional whose
maximum value coincides with J½T�� and is attained on the actual
solution of the problem, let us extend the domain of the functional
(5) by introducing a vector function qðMÞ, M 2 V , satisfying the
condition

qiðMÞ þ kijðMÞ @TðMÞ
@xj

¼ 0; M 2 V ; ð7Þ

where the qi are the projections of the heat flux density vector q
onto the axes Oxi. Let us eliminate the projections of the tempera-
ture gradient from the functional (5) by using condition (7) and
simultaneously, with the help of the vector Lagrange multiplier
mðMÞ defined at the points M 2 V and having projections mi onto
the axes Oxi, introduce this condition in the functional (5). Thus,
omitting the arguments of functions, we write

I1½T; qi;mi� ¼
Z

V
qi
rij
2
qjdV þ

Z
S1

a1T
T � 2T1

2
dS

þ
Z

S2

a2T
T � 2T2

2
dS�

Z
V
mi qi þ kij

@T
@xj

� �
dV ; ð8Þ

Fig. 1. Calculation scheme.
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