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a b s t r a c t

We present three-dimensional lattice Boltzmann simulations of dilute suspensions containing porous
particles. The fluid flow around and inside a porous particle is described by the volume-averaged macro-
scopic equations in terms of intrinsic phase average. The energy dissipation of the suspended particle in a
Couette flow is calculated to obtain the relative viscosity of the suspension. Results show that the relative
viscosity of the suspension increases linearly with the particle volume fraction. A correlation equation is
obtained for the intrinsic viscosity as a function of Darcy number. It is found that when the suspension is
at the inertial flow regime, its intrinsic viscosity increases linearly with Reynolds number, and the
increasing rate depends on Darcy number.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Suspended solid particles in a fluid are ubiquitous in nature and
have wide applications in industry. Determining the rheology of a
particle suspension is important to control industrial flow pro-
cesses accurately [1]. The rheology of a suspension is usually char-
acterized by the relative viscosity gr , which is the ratio between
effective viscosity of a suspension and viscosity of the base fluid.
The first theoretical study to determine the relative viscosity may
date back to 1906, when Einstein derived the mathematical
expression gr ¼ 1þ h�gi/ for a dilute suspension containing spher-
ical particles [2]. Here, / is solid particle volume fraction, h�gi is
intrinsic viscosity and takes the value of h�gi ¼ 2:5. Afterwards, to
study a semi-dilute suspension that has higher particle volume
fraction, the relationship gr ¼ 1þ h�gi/þ h�gi1/2 þ � � �was proposed
in which higher order terms of / were included [3]. For a concen-
trated suspension that has even higher particle volume fraction of

/ > 25%, the relationship gr ¼ ð1� /=/mÞ�B/m was proposed so
that the relative viscosity would approach infinite when the parti-
cle volume fraction is approaching the densest possible packing
fraction /m [4]. In addition to suspensions of spherical particles,
research attentions are also drawn on non-spherical particles.
Examples include Jeffery’s analytical solution of relative viscosity
for suspensions of ellipsoidal particles that are prolate or oblate
[5]. Recently, with the tremendous increase in computational
capability, first-principle-based modeling techniques that are

capable of handling complex moving boundary problems are also
adopted as an alternative strategy to determine the rheology of
suspensions [6–11]. The basic idea behind these numerical
approaches is to obtain the energy dissipation of the suspended
particle in a Couette flow through direct numerical simulation of
the flow field. For example, Lishchuk et al. [7] calculated the shear
viscosity of suspensions of spherical particles and reproduced both
the Einstein’s relation for low particle volume fraction and Krieger-
Dougherty’s relation for high particle volume fraction. Moreover,
these numerical approaches do not restrict the flow at low Rey-
nolds number (Re), which allows to investigate the dependence
of intrinsic viscosity on Re. For example, Kulkarni and Morris [8]
reported the relative viscosity of suspension of spherical particles
at 0:01 6 Re < 5. They showed that inertia can increase the particle
contribution to the effective viscosity of the suspension. Huang
et al. [11] found that for dilute prolate and oblate spheroidal sus-
pensions, the intrinsic viscosity changes linearly with Re at low-
Re regime and nonlinearly at high-Re regime.

The above studies focused on solid particles that are imperme-
able to fluid, while in real-world applications, porous particles that
are permeable to fluids are also frequently encountered, such as
core-shell like particles, catalyst clusters, encapsulated drugs, and
so on [12–14]. Efforts have been devoted to study the effect of per-
meability of the porous particle on the flow pattern and the
particle-fluid interactions [15,16]. For example, Masoud et al.
[15] theoretically investigated the dynamics of porous elliptical
particle in shear flow. They concluded that although the flow field
inside and around the particle significantly depends on the perme-
ability of the porous particle, the permeability has little effect on
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the rotational behavior of the porous particle. Later, Li et al. [16]
numerically investigated the dynamics of porous circular particle
in shear flow. They found Masoud et al.’s conclusion is only vali-
dated when the fluid inertia is negligible or the confinement effect
of the bounding walls is weak.

Although progress has been made on the research of suspen-
sions containing porous particles, to the best of our knowledge,
there is no investigation on its rheology with the aid of first-
principle-based modeling techniques. In this work, we present
three-dimensional lattice Boltzmann (LB) simulation of a dilute
suspension containing porous particle to determine the relative vis-
cosity. To describe the fluid flow around and inside a porous parti-
cle, the general volume-averaged conservation equations are
adopted [16–18]. When the fluid motion is sufficient slow, the
Darcy’s law [19] and the Brinkman-Debye-Bueche (BDB) equation
[20,21] can be recovered; when the flow Reynolds number is finite,
the inertial effect on the flow inside and around the porous particle
can be incorporated. More importantly, the continuity of both fluid
velocity and shear stress at the interface between the porous region
and the free flow is ensured through the incorporating of a second-
order viscous term in the volume-averaged macroscopic governing
equation. Here, the lattice Boltzmann (LB) method is chosen to
obtain the numerical solution due to its simplicity, accuracy, and
parallelism for simulating complex multiphase flows [22–24].

2. Numerical method

2.1. Volume-averaged macroscopic governing equations

The fluid flow around and inside the porous particle is described
by the volume-averaged equations in terms of intrinsic phase aver-
age proposed by Wang et al. [18], which is written as

r � huf i f ¼ 0 ð1Þ

@huf i f
@t

þ huf i f � rhuf i f ¼ � 1
qf

rhpf i f þ mr2huf i f þ Fm ð2Þ

where qf is the fluid density and m is the fluid viscosity. uf and pf are
the local fluid velocity and pressure, respectively. Here, the intrinsic

phase average is defined as hwkik ¼ 1
Vk

R
Vk

wkdV , and the phase

average is defined as hwki ¼ 1
V

R
Vk

wkdV . Vk denotes the volume of

the k-phase within the representative volume V. wk is a quantity
associated with the k-phase. The subscript s and f represent solid
and fluid phase, respectively. The total body force Fm in Eq. (2) is
given by [18]

Fm ¼ � em
K

huf i f � husis
� �

� e2Feffiffiffiffi
K

p huf i f � husis
� �

huf i f � husis
��� ��� ð3Þ

where e is the porosity of the porous particle. The first and the sec-
ond terms on the right-hand side of Eq. (3) are the linear Darcy drag
and nonlinear Forchheimer drag due to the existence of porous
medium, respectively. Because the porous particle moves as a
rigid-body, its translational and rotational velocities does not
change after taking the intrinsic phase averaging. Then, the intrinsic

phase-average velocity of the solid particle husis is calculated as
husis ¼ us. The permeability K quantifies the ability of the porous
particle to transmit fluids. Fe is the geometric function and it is

given as Fe ¼ 1:75=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
150e3

p
following Ergun’s correlation. The por-

ous structure inside the particle is described by the permeability
K and the porosity e, which can be correlated via the relation

K ¼ e3d2
p= 150ð1� eÞ2
h i

to simplify the problem. Here, dp is the char-

acteristic diameter of filling grains within the porous particle. In the
limit of e! 0, the porous particle would reduce to an impermeable
particle; while in the limit of e! 1, the regime occupied by the por-
ous particle would be filled with fluid. The dimensionless numbers
characterize the system are the particle Reynolds number (Rep) and
Darcy number (Da), which are defined as

Rep ¼ CD2

m
; Da ¼ K

D2 ð4Þ

where C is the shear rate, and D is the diameter of the porous
particle.

2.2. Lattice Boltzmann model for volume-averaged equations

In LB method, to solve Eqs. (1) and (2), the evolution equation of
density distribution function can be written as

f iðxþ eidt; t þ dtÞ � f iðx; tÞ ¼ � f iðx; tÞ � f ðeqÞi ðx; tÞ
h i

þ dtFi;

ði ¼ 0;1; . . . ;18Þ ð5Þ

where f i is the density distribution function, t is the time, dt is the
time step, x is the fluid parcel position. ei is the discrete velocity
along the ith direction, and is given as

where c ¼ dx=dt is lattice constant, and c ¼ dx ¼ dt ¼ 1 is adopted in
this work. The equilibrium particle distribution function is

f ðeqÞi ðx; tÞ ¼ qfxi 1þ ei � huf i f
c2s

þ
ei � huf i f
� �2

2c4s
� jhuf i f j2

2c2s

2
64

3
75;

ði ¼ 0;1; . . . ;18Þ ð7Þ

where the weights are x0 ¼ 1=3; x1�6 ¼ 1=18; x7�18 ¼ 1=36, and
c2s ¼ 1=3c2 is the lattice sound speed. The forcing term is given
by [16]

Fi ¼ qfxi 1� 1
2s

� �
ei � Fm

c2s
þ ei � huf i f

c4s
ðei � FmÞ � huf i f � Fm

c2s

" #
;

ði ¼ 0;1; . . . ;18Þ ð8Þ

The macroscopic density q is calculated as

q ¼
X18
i¼0

f i ð9Þ

The macroscopic velocity huf i f is calculated as

e0; e1; e2; e3; e4; e5; e6; e7; e8; e9; e10; e11; e12; e13; e14; e15; e16; e17; e18½ �

¼ c

0 1 �1 0 0 0 0 1 �1 1 �1 1 �1 1 �1 0 0 0 0
0 0 0 1 �1 0 0 1 1 �1 �1 0 0 0 0 1 �1 1 �1
0 0 0 0 0 1 �1 0 0 0 0 1 1 �1 �1 1 1 �1 �1

2
64

3
75 ð6Þ
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