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a b s t r a c t

Buoyant flow in a vertical porous layer whose open boundaries are kept at uniform and different temper-
atures is analysed. The presence of a uniform volumetric heat source alters the conduction profile of the
temperature field for the stationary parallel flow. It is shown that this stationary flow becomes unstable
when either the temperature difference between the boundaries or the intensity of the volumetric heat
source are sufficiently large. The linear instability is investigated through a study of normal mode distur-
bances. The stability eigenvalue problem is solved numerically by employing the shooting method. The
neutral stability curves are obtained and the critical parameters at onset of instability are determined.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Enhancement of heat transfer across a porous layer saturated by
a fluid can be an important aspect for either engineering and geo-
physics. Engineering applications range from insulation techniques
for buildings and, specifically, for breathing walls to chemical
engineering and the design of packed bed reactors. Geophysical
applications are relative to groundwater dynamics and the charac-
terisation of thermal environments such as hot springs.

In a short paper, Gill [1] published a rigorous mathematical
proof that buoyant flow in a vertical porous layer is linearly stable.
He assumed that the boundaries of the porous layer were imper-
meable and kept at different constant temperatures T1 and T2. A
recent study [2] reconsidered the analysis carried out by Gill on
altering the boundary conditions of the system, namely by assum-
ing open boundaries of the porous layer instead of impermeable
walls. This change turned out to mean a significant difference with
respect to the case analysed by Gill. In fact, the buoyant flow in the
vertical porous slab displays a linear instability, which is absent if
the boundaries are modelled as impermeable [2]. This analysis has
been further developed by Barletta [3] by considering the case
where both a pressure and a temperature difference is prescribed
across the boundaries of the vertical porous slab.

Inspired by the pioneering paper by Gasser and Kazimi [4], sev-
eral authors analysed the onset of convection in a horizontal por-
ous layer under the influence of an internal heat source. Rhee
et al. [5] collected experimental results on this convection system,
by employing an inductively heated particulate bed. More recently,
further results were obtained by He and Georgiadis [6], Khalili and
Shivakumara [7], and by Nouri-Borujerdi et al. [8,9]. The effects of
heterogeneity in the medium, have been investigated by Nield and
Kuznetsov [10,11], by Kuznetsov and Nield [12–14], as well as by
Shalbaf et al. [15]. Non-uniform internal heating has been analysed
in a recent paper by Nield and Kuznetsov [16].

The aim of this paper is to further develop the analysis of insta-
bility in a vertical porous layer performed by Barletta [2] on con-
sidering a case where the uniform temperature gradient in the
basic state becomes non-uniform due to the presence of an internal
heat source. The basic stationary state is expressed by a pressure
equal to the hydrostatic pressure, by a parallel velocity field direc-
ted along the vertical axis, and by a purely horizontal temperature
gradient. The velocity and temperature profiles are given by
second-degree polynomials in the horizontal coordinate. The linear
stability analysis of the basic state is carried out versus general
three-dimensional modes of perturbation. Neutral stability curves
are drawn for different values of the heat source parameter. A
shooting method is developed to compute the neutral stability data
and to evaluate numerically the critical Rayleigh number and wave
number. The effect of the internal heat source is expected to influ-
ence significantly not only the basic stationary solution, but also

http://dx.doi.org/10.1016/j.ijheatmasstransfer.2017.04.063
0017-9310/� 2017 Elsevier Ltd. All rights reserved.

⇑ Corresponding author.
E-mail address: antonio.barletta@unibo.it (A. Barletta).

International Journal of Heat and Mass Transfer 111 (2017) 1063–1070

Contents lists available at ScienceDirect

International Journal of Heat and Mass Transfer

journal homepage: www.elsevier .com/locate / i jhmt

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijheatmasstransfer.2017.04.063&domain=pdf
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2017.04.063
mailto:antonio.barletta@unibo.it
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2017.04.063
http://www.sciencedirect.com/science/journal/00179310
http://www.elsevier.com/locate/ijhmt


the stability analysis and the critical values for the onset of
instability.

2. Governing equations

The Oberbeck-Boussinesq approximation is employed and the
validity of Darcy’s law for flow in a saturated porous medium is
assumed [17]. Let us consider a plane and vertical porous slab with
width L (see Fig. 1). We denote with g the gravitational accelera-
tion and with g its modulus. From Fig. 1, we have g ¼ �g êy, where
êy is the unit vector along the y axis. The isothermal boundaries,
x ¼ �L=2 and x ¼ L=2, are kept at different temperatures, T1 and
T2, respectively. The medium is considered as homogeneous and
isotropic, with local thermal equilibrium between the fluid and
the solid phases. A dimensionless formulation can be introduced
by means of a suitable scaling of the dimensional quantities,

1
L

ðx; y; zÞ ! ðx; y; zÞ; a
rL2

t ! t;
K
la

ðp� p0Þ ! p;

L
a

u ¼ L
a

ðu;v ;wÞ ! ðu;v ;wÞ ¼ u;
T � T0

T2 � T1
! T: ð1Þ

Here, u;p and T are the velocity, pressure and temperature, while
ðx; y; zÞ are the Cartesian coordinates. The difference p� p0 is the
local increment above the hydrostatic pressure p0. Moreover, a is
the average thermal diffusivity of the saturated porous medium, l
is the dynamic viscosity, K is the permeability, and r is the heat
capacity ratio of the saturated porous medium. The latter quantity
is defined as the ratio between the average volumetric heat capacity
of the saturated medium and the volumetric heat capacity of the
fluid. In Eq. (1), the reference temperature T0 is chosen as the mean
value between T1 and T2, namely T0 ¼ ðT1 þ T2Þ=2.

Thus, the local mass, momentum and energy balance yield the
dimensionless governing equations,

$ � u ¼ 0; ð2aÞ
u ¼ �$pþ RT êy; ð2bÞ
@T
@t

þ u � $T ¼ r2T þ Q ; ð2cÞ

where R is the Rayleigh number proportional to T2 � T1, and Q is a
dimensionless parameter proportional to the intensity of the volu-
metric heat source, _q,

R ¼ gbðT2 � T1ÞKL
ma

; Q ¼ _qL2

kðT2 � T1Þ : ð3Þ

Since _q > 0, it is not restrictive to assume that both R and Q are both
non-negative. In Eq. (3), m denotes the kinematic viscosity of the

Nomenclature

a dimensionless complex parameter, g� ix, Eq. (9)
êy unit vector in the y direction
f ðxÞ;hðxÞ perturbation amplitudes, Eq. (9)
g modulus of g
g gravitational acceleration
ĥðxÞ modified perturbation amplitude, Eq. (13)
I;R imaginary part, real part

k wave number, ðk2y þ k2z Þ
1=2

k wave vector, ð0; ky; kzÞ
ky; kz y and z components of the wave vector, Eq. (9)
K permeability
L channel width
N number of steps used in the Runge-Kutta solver
p pressure, Eq. (1)
p0 reference pressure
_q power per unit volume generated within the porous

medium
Q dimensionless parameter, Eq. (3)
Q̂ dimensionless parameter, Eq. (13)
R Rayleigh number, Eq. (3)
S modified Rayleigh number, Eq. (11)
t time, Eq. (1)
T temperature, Eq. (1)

T0 reference temperature, ðT1 þ T2Þ=2
T1; T2 boundary temperatures
u velocity, ðu;v;wÞ, Eq. (1)
ðx; y; zÞ Cartesian coordinates, Eq. (1)

Greek symbols
a average thermal diffusivity
b thermal expansion coefficient
dx step-size used in the Runge-Kutta solver, 1=N
e perturbation parameter, Eq. (6)
g growth rate of the perturbations, RðaÞ
k average thermal conductivity
l dynamic viscosity
m kinematic viscosity
n1; n2 dimensionless parameters, Eq. (16)
r heat capacity ratio
x angular frequency of the perturbations, �IðaÞ

Subscripts, superscripts
� perturbation fields, Eq. (6)
0 derivative with respect to x
b basic solution
c critical value

Fig. 1. Two-dimensional sketch of the vertical porous layer.
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