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a b s t r a c t

Finite amplitude convection in a inclined porous layer heated from below is studied by using local ther-
mal non-equilibrium (LTNE) as mathematical model which takes into account the heat transferred
between the solid phase and the fluid phase. Consequently, in addition to Darcy-Rayleigh number Ra
and the inclination angle /, two further non dimensional numbers are introduced: the inter-phase heat
transfer parameter H and the porosity modified conductivity ratio c. In a recent paper (Barletta and Rees,
2015), the linear stability analysis of the basic monocellular flow indicated that the inclination angle pro-
motes the appearance of longitudinal rolls as the preferred mode of convection. The current paper focuses
on the nonlinear evolution of longitudinal rolls in a supercritical regime of convection. A weakly nonlin-
ear analysis, using a derived amplitude equation, is adopted to determine the nonlinear effects of the
parameters Ra;/;H and c. The results indicate that in inclined layers (i) the nonlinearity decelerates
the mean flow; (ii) the heat transfer, determined by the evaluation of the Nusselt number (Nu) at the
layer boundary, corresponds to the one obtained for horizontal layers by scaling Ra with cos/, i.e.
Nu ¼ NuðRa cos/;H; cÞ; (iii) in accordance with existing laboratory experiments, the slope of Nu is less
than 2, where 2 is the value predicted by the local thermal equilibrium model, and the slope represents
the derivative of Nuwith respect to the distance of the critical parameter from the threshold value for the
onset of instability; (iv) increasing values of both H and c produce an enhancement of the heat transfer
across the layer. Finally, the comparison between the LTNE theoretical predictions and existing experi-
ments conducted with various combinations of solid matrix and fluids suggests a possible alternative
way to determine the heat transfer coefficient H.

� 2017 Published by Elsevier Ltd.

1. Introduction

The problem of convective instability in a porous medium
heated from below and saturated by a Newtonian fluid has been
investigated extensively in the past. The work devoted to this area
is well documented by the reviews of Nield and Bejan [1], Rees [2],
Tyvand [3] and Barletta [4]. Among the experimental investiga-
tions aimed at visualizing the convective patterns and the temper-
ature distributions we mention Elder [5], Combarnous [6], Close
et al. [7], Shattuck et al. [8] and Howle et al. [9] for horizontal lay-
ers and Combarnous [10] when the porous layer is inclined to the
horizontal.

For the horizontal configuration, the experimental results
obtained with various combinations of solid particles and working
fluids reveal that the heat transfer rate is not only a function of the
Darcy-Rayleigh number Ra but it can also be significantly affected
by the structure of the medium and the fluid properties as well.
Particularly, the measured slope of the Nusselt number versus
the relative distance to the critical Darcy-Rayleigh number was
found to depend on the solid/fluid combination and was less than
the theoretical prediction of 2 derived by Joseph [11]. The explana-
tion for the difference between theory and experiments may lie
with the effects of finite heat transfer coefficient between fluid
and solid phases. Combarnous and Bories [12] proposed a local
thermal non-equilibrium (LTNE) model with two-energy equa-
tions, which introduces a finite inter-phase heat transfer coeffi-
cient and the ratio between fluid and solid conductivities as
additional parameters. We mention that the growing volume of
work with the LTNE model is well documented in [1,12–27].
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On the other hand, in early experiments Bories and Combarnous
[10] examined the secondary flow configurations of convection in a
rectangular porous medium heated from below and inclined to the
horizontal. The temperature recordings indicated that two main
types of convective structures may be observed at the onset of con-
vection. For small inclination angle /, the vortex patterns are poly-
hedral cells (i.e. oblique rolls). For higher values of /, the
polyhedral cells are replaced by stationary longitudinal flow. The
observed transition between the two types of convective patterns
occurs at a critical angle /c ’ 15�. Some hysteresis effects associ-
ated to this transition were also observed. However, the heat trans-
fer measured through the boundaries for a large range of slopes
(0�–60�) is found to be independent of the shape of the convective
patterns, whether longitudinal rolls or polyhedral cells and a
unique relation between Nusselt number and Ra cos/ has been
found. Caltagirone and Bories [28] examined the transition
between the secondary flows in polyhedral cells and the longitudi-
nal rolls both by three-dimensional numerical simulation of the
problem and by performing a linear stability analysis of the basic
state. A recent note by Nield [29] contains an interesting discussion
on the results obtained by Caltagirone and Bories [28] and gives
new insights into the question of the preferred patterns at the
onset of the instability: rolls or polyhedral cells. Further results
on the stability of an inclined porous layer were obtained by
Storesletten and Tveitereid [30], Karimi-Fard et al. [31], Rees and
Bassom [32], Rees et al. [33]. Karimi-Fard et al. [31] carried out

an investigation of oscillatory instability for the case of double-
diffusion. Rees and Bassom [32] defined a Squire-like transforma-
tion allowing a general study of normal modes with an arbitrary
orientation. Storesletten and Tveitereid [30] included in the stabil-
ity analysis the effect of anisotropy in the porous medium, while
Rees et al. [33] extended this analysis by considering an arbitrary
orientation of the principal axes of anisotropy. Recently Barletta
and Rees [34] revisited the topic of instability in an inclined porous
layer and performed a linear stability analysis in the framework of
LTNE model by assuming an infinite extent of the porous cavity in
the transverse and longitudinal directions. These authors showed
that the longitudinal rolls are the preferred mode of instability at
the onset of convection. The neutral stability for the longitudinal
rolls is found to correspond to the one obtained for a horizontal
layer, by scaling the Darcy-Rayleigh number with cosine of the
inclination angle.

At the pore level, the interface between solid and fluid cannot
display any discontinuity of temperature. However, when average
temperatures are evaluated over a reference elementary volume
(REV) for the solid and the fluid, these temperatures may well be
different. This effect can arise in an unsteady regime, but also
under steady conditions in cases where the thermal conductivities
of the fluid and the solid are markedly different [1]. The LTNE
model of heat transfer in porous media provides a description of
how the different temperature fields of the solid phase and of
the fluid phase interact.

Nomenclature

a dimensionless wave number
A amplitude of convection
ax; az components of the dimensionless wave vector
c specific heat
d diameter of the beads
êx; êy; êz unit vectors in the ðx; y; zÞ-directions
g; g gravitational acceleration vector; modulus of g
h volumetric inter–phase heat transfer coefficient
H volumetric dimensionless inter–phase heat transfer

parameter, Eq. (2)
J heat flux
k thermal conductivity
km effective thermal conductivity, vkf þ ð1� vÞks
K permeability
L layer thickness
L;L0 linear operators
LTE local thermal equilibrium
LTNE local thermal non-equilibrium
N nonlinear expression
Nu Nusselt number
p dimensionless pressure disturbance amplitude, Eq. (10)
P dimensionless pressure disturbances, Eq. (8)
Ra Darcy–Rayleigh number, Eq. (2)
Re;Im real part; imaginary part
S; eS transformed Darcy-Rayleigh numbers, Eqs. (11) and

(14)
SLTE slope of Nusselt number according to local thermal

equilibrium
SLTNE slope of Nusselt number according to local thermal non-

equilibrium
t dimensionless time, Eq. (2)
T0 temperature of the upper boundary
T dimensionless temperatures, Eq. (2)
u dimensionless velocity vector, ðu;v;wÞ, Eq. (2)

U dimensionless velocity disturbance vector, ðU;V ;WÞ, Eq.
(5)

~V perturbations vector, ðHf ;Hs; PÞT , Eq. (16)
x dimensionless position vector, ðx; y; zÞ, Eq. (2)

Greek symbols
a thermal diffusivity
am effective thermal diffusivity, km=ðqcÞf
b thermal expansion coefficient
d coefficient, Eq. (36)
c dimensionless parameter, Eq. (2)
DT reference temperature difference
e dimensionless perturbation parameter, Eq. (5)
h dimensionless temperature disturbance amplitudes, Eq.

(10)
H dimensionless temperature disturbances, Eq. (5)
k dimensionless parameter, Eq. (2)
m kinematic viscosity
q density
u arbitrary constant, Eq. (49)
/ inclination angle to the horizontal
U transformed angle, Eq. (11)
v porosity
x complex dimensionless parameter, Eq. (10)
s relaxation time, Eq. (41)

Superscript, subscripts
H dimensional quantity
b basic solution
c critical value
f fluid phase
s solid phase
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