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a b s t r a c t 

This paper presents an analytical approach to evaluate the volume integrals emerging during dispersed 

phase fraction computation in Lagrangian–Eulerian methods. It studies a zeroth, second, and fourth or- 

der polynomial filtering function in test cases featuring structured and unstructured grids. The analytical 

integration is enabled in three steps. First, the divergence theorem is applied to transform the volume in- 

tegral into surface integrals over the volumes’ boundaries. Secondly, the surfaces are projected alongside 

the first divergence direction. Lastly, the divergence theorem is applied for the second time to transform 

the surface integrals into line integrals. We propose a generic strategy and simplifications to derive an 

analytical description of the complex geometrical entities such as non-planar surfaces. This strategy en- 

ables a closed solution to the line integrals for polynomial filtering functions. Furthermore, this paper 

shows that the proposed approach is suitable to handle unstructured grids. A sine wave and Gaussian 

filtering function is tested and the fourth order polynomial is found to be a good surrogate for the sine 

wave filtering function as no expensive trigonometric evaluations are necessary. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

An Euler–Lagrange approach consists of a continuous descrip- 

tion of the carrier fluid flow using an Eulerian reference frame and 

an interpenetrating disperse phase in Lagrangian formulation. The 

disperse phase is a collection of particles which are tracked using 

Newton’s law. Such a setup can be applied for the investigation of 

multiphase flows, e.g. bubbly flows or particulate flows. The reader 

is referred to the recent review paper Subramaniam (2013) for de- 

tails. The disperse phase is unresolved in an Euler–Lagrange frame- 

work, cf. ( van der Hoef et al., 2008 ), and thus it is necessary to 

model the influence of the particles onto the continuous phase as 

the exact interface between the phases. This paper focuses on the 

dispersed phase volume computation to account for the volume 

displaced by the disperse phase in the continuous phase. As the 

particle is treated point-like, a filtering function is applied at each 

particle position to smear the volume of the corresponding disper- 

sion onto the fluid domain. The fluid field is subdivided into non- 
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overlapping control volumes which might be a cell or an element 

in a finite volume or finite element representation of the carrier 

fluid field. Finally, the volume occupied by the disperse phase V d 

within a control volume V can be used to compute the fluid frac- 

tion 

ε = 1 − V d 

V 

which is the fill level of remaining fluid in the control volume. 

The fluid fraction is necessary in e.g. the volume-averaged Navier–

Stokes equations ( Anderson and Jackson, 1967 ). The dispersed 

phase volume computation requires the evaluation of a volume in- 

tegral over each fluid cell over the filtering functions of submerged 

particles. The solution of these volume integrals using an analytical 

integration is the key aspect considered in this paper. 

Several options for filtering functions can be found in literature 

depending on the desired accuracy and the computational effort 

to be invested. The most trivial approach, known as center of vol- 

ume or point approximate method , assumes that the particle’s vol- 

ume is not distributed across several fluid cells. The corresponding 

filtering function is a Dirac delta at the particle center. Thus, the 

volume is assigned to the cell in which the center of the particle 

resides. This leads to jumps in the dispersed phase fraction when 

a particle passes cell boundaries which leads to artificial pressure 
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waves and detrimental pulsatile fluid flow profiles. A common as- 

sumption in Euler–Lagrange approaches are spherical shapes of 

the particles under consideration. Also, the support of the filter- 

ing function is assumed spherical and hence the volume integral 

during dispersed phase volume computation includes spherical do- 

mains. Dependent on the discretization of the continuous phase, 

Freireich et al. (2010) presents an exact method to compute the 

dispersed phase volume when a Cartesian grid for the fluid is used 

and Wu et al. (2009) gives the equations to compute the dispersed 

phase volume on an unstructured fluid grid. In the latter, tetra- 

hedral, hexahedral, and wedge elements are considered. Although 

both methods lead to an exact analytical solution, the former is 

restricted to Cartesian grids which might not be appropriate in 

case of flow in complex domains and the latter contains expen- 

sive trigonometric calculations. Boyce et al. (2014) states that the 

proposed look-up table in Wu et al. (2009) only circumvents the 

expensive calculations, nevertheless finding the position of the par- 

ticle relative to the element boundaries remains very costly. 

In case the assumption of spherical particles might not hold, 

Tomiyama et al. (1997) proposes to use an approximation with cu- 

bic shape for the possibly complex particle contour in order to ease 

computation. Hence, the filtering function has a cubic support. This 

approximation can also be plugged in when sphericity is prevailing 

which then leads to a filtering function with cubic support that 

circumscribes the sphere. According to Khawaja et al. (2012) this 

can lead to errors up to 20% compared to a spherical support of 

the filtering function and therefore a correction is proposed to 

reduce the error significantly. In Kitagawa et al. (2001) , a cubic 

support for the filtering function is applied and different filter- 

ing functions, namely a (clipped and enhanced) Gaussian function 

and a sine wave function, are spanned in the cube. The different 

filtering functions are compared with respect to velocity fluctu- 

ations when the dispersed phase passes across cells of the un- 

derlying fluid. A clear relationship between the choice of the fil- 

tering function and velocity fluctuations is reported with an im- 

provement when the filtering function is smoother, i.e. the value 

and its first derivative of the filtering function are zero at the 

boundary of the filtering function. Unfortunately, there is no hint 

in Kitagawa et al. (2001) how the arising volume integrals are eval- 

uated. 

Our work is based on the ideas of Rathod and Govinda 

Rao (1995) and Dasgupta (2003) in which the volume integral in 

the dispersed phase volume computation is transformed into a 

surface integral and in a second step into a parametric line inte- 

gral via applying divergence theorem twice. Rathod and Govinda 

Rao (1995) performs symbolic integration of the integrand and 

Dasgupta (2003) applies Gaussian quadrature to evaluate the re- 

sulting line integrals. As our approach aims on solving a priori 

known filtering functions it is possible to perform the integra- 

tion and implement the resulting equation in order to circumvent 

the need of repeated symbolic integration during the simulation. 

Three different filtering functions, namely a constant, quadratic, 

and a quartic polynomial will be compared. The constant poly- 

nomial filtering function is well-known but also its drawbacks 

are well-known. The fourth order polynomial was proposed in 

Deen et al. (2004) but it is investigated here in detail for the first 

time also considering unstructured grids. To the best of our knowl- 

edge, the quadratic polynomial filtering function has not been used 

thus far in the literature. As we rely on analytical integration, the 

usual spurious oscillations do not appear. We apply our approach 

using the polynomial filtering functions to the test case proposed 

in Kitagawa et al. (2001) in which a single filtering function is 

moved through a Cartesian domain. Furthermore, we modify this 

test case to show that our approach is also able to handle unstruc- 

tured grids. 

This paper is structured as follows. In Section 2 , we present the 

polynomial filtering functions and describe the procedure to derive 

the line integrals via applying divergence theorem twice onto the 

volume integral in order to compute the dispersed phase fraction. 

The analytical solution of the line integrals is given and exemplar- 

ily, the solution for the zeroth order polynomial filtering function 

is calculated. We proceed in Section 3 with the computational ap- 

proach to obtain the geometry of the integration lines via geomet- 

ric intersection calculations between the fluid grid and the domain 

covering the filtering function. Section 4 presents numerical exam- 

ples. We conclude the findings of this work with Section 5 . 

2. Dispersed phase fraction evaluation: from volume 

integration to line integration 

In an Euler–Lagrange approach, it is necessary to account for 

the displaced volume of the disperse phase in the continuous fluid 

phase. The disperse phase in the Lagrangian frame is modeled with 

point-like particles interacting with the fluid in Eulerian descrip- 

tion. As the volume of a point is zero, the concept of dispersed 

phase fraction is used in the fluid to account for the volume of the 

disperse phase. The dispersed phase volume is subtracted from the 

fluid domain, leaving the volume purely occupied with fluid. We 

compute the liquid phase volume fraction in a discretized cell �j 

as 

εl, j = 1 −

k P ∑ 

k =1 

V P,k 

∫ 
� j 

ψ i (x, y, z) d�∫ 
� j 

1 d�
, (1) 

where k P is the number of particles whose filtering cubes lie par- 

tially or fully in cell �j and V P, k is the volume of particle k . 

Therein, ψ i ( x, y, z ) and i denote the filtering function and its or- 

der, respectively. The challenge in computing (1) lies in evaluating 

the volume integral in the nominator on the right-hand side accu- 

rately and efficiently. Once this is accomplished, then the compu- 

tation of the denominator in (1) follows analogously. The proposed 

methodology in this paper allows to integrate ∫ 
� j 

ψ i (x, y, z) d� (2) 

analytically using polynomial filtering functions and an appropriate 

description of the underlying geometry. The underlying cells �j of 

the grid are assumed to be convex. 

Remark 1. The dispersed phase in this work may consist of solid, 

fluid, or gas particles. 

2.1. Analytical integration with the divergence theorem 

The following sections outline the mathematical foundations of 

the proposed method to gain an analytic solution of (2) . The con- 

ceptual idea is to formulate the three-dimensional volume inte- 

gral as a collection of one-dimensional line integrals over the vol- 

umes’ boundaries. We follow three steps to achieve this objective, 

cf. ( Sudhakar et al., 2014; Sudhakar and Wall, 2013 ): 

(i) first, we formulate the volume integral as surface integrals 

over the volumes’ bounding surfaces with the divergence 

theorem ( Arens et al., 2015; Morse and Feshbach, 1953 ), 

(ii) then, we project the surfaces alongside the divergence direc- 

tions in i), and 

(iii) finally, we evaluate the surface integrals with line integrals 

along the edges of the surfaces by applying the divergence 

theorem again. 
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