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a b s t r a c t

A linearly temperature-dependent thermal conductivity is estimated in steady state heat conduction
problems using an inverse analysis. A body fitted grid generation technique is employed to mesh the
two-dimensional body and solve the direct heat conduction problem. An efficient, accurate, and easy to
implement method is presented to compute the sensitivity coefficients through derived expressions. The
main feature of the sensitivity analysis is that all sensitivities can be obtained in one solve, irrespective of
the number of unknown parameters. The conjugate gradient method along with the discrepancy prin-
ciple is used in the inverse analysis to minimize the objective function and achieve the desired solution.
The ability to efficiently and accurately recover the non-constant thermal conductivity is demonstrated
through a number of benchmark problems.

© 2017 Elsevier Masson SAS. All rights reserved.

1. Introduction

Due to the increasing development of powerful computers in
the past decades, the numerical treatment of inverse heat transfer
problems (IHTP) has gained much attention. However, difficulties
occur in the solution of such problems due to their ill-posed nature.
Ill-posed problems are inherently unstable and very sensitive to
error in the measurements used in the analysis. Among the
methods to overcome the instabilities in inverse heat transfer
problems are the iterative regularization methods [1]. There is no
need to modify the original objective function in iterative regula-
rizationmethods. In these gradient basedmethods, the discrepancy
principle may be used as a criterion to terminate the iteration and
obtain a reasonably stable solution. IHTP deals with the determi-
nation of the boundary conditions, the thermo-physical properties,
the geometrical configuration of the heated body, and the heat flux
by knowing the temperature distribution on some part of the heat
conducting body boundary. Contrary to IHTP, the well-posed direct
heat transfer problems are concerned with the determination of
the temperature distribution in the body by having the boundary
conditions, the thermo-physical properties, the body geometrical

configuration, and the heat flux applied at some part of the body
boundary [1,2]. The inverse analysis has been extensively employed
in the estimation of the thermal conductivity and the heat transfer
coefficient [3e32], the heat flux [16,33e39], and the determination
of the boundary shape of bodies [40e46], to name a few.

There exist materials in which the thermal conductivity varies
with the temperature. The heat conduction equation with variable
thermal conductivity is a nonlinear equation and the numerical
solution of this equation and the associated inverse analysis needs
special consideration. In this study, a linearly temperature-
dependent thermal conductivity is used in problems governed by
the steady state heat conduction equation (with no heat genera-
tion). Although the linear form for this dependency is the simplest
one, we can extend the method to other forms of dependency. The
proposed procedure takes advantage of the two dimensional
elliptic grid generation technique to mesh an irregular 2-D body, a
nonlinear least square formulation to define the objective function,
an efficient and accurate sensitivity analysis scheme to compute the
sensitivity coefficients, and a gradient based optimization method.
The conjugate gradient optimization method is used as a tool to
reduce the mismatch between the estimated temperatures (ob-
tained from the solution of the direct heat transfer problem) and
the measured temperatures and the discrepancy principle is used
to terminate the iterative procedure. The main feature of the* Corresponding author.
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proposed method is that the sensitivity problem can be solved
without requiring solving the adjoint problem. An explicit expres-
sion for the sensitivity coefficients is derived which allows us to
compute the sensitivity coefficients in one single solution of the
direct heat transfer problem (at each iteration), regardless of the
number of unknown variables appearing in the inverse analysis. For
many materials, the thermal conductivity can be approximated as a
linear function of temperature over limited temperature ranges and
expressed as kðTÞ ¼ k0ð1þ bTÞ where b is called the temperature
coefficient of thermal conductivity [47]. In this study, therefore, the
thermal conductivity is regarded as kT ¼ aþ bT where T is the
temperature and a and b are constant ðbs0Þ. As will be explained
later, however, other forms of dependency of the thermal con-
ductivity on the temperature, such as kT ¼ aþ bT þ cT2 (quadratic)
and kT ¼ aþ bT þ cT2 þ dT3 (cubic), may also be used.

The numerical algorithm presented in this study is sufficiently
general by which we can determine the variable thermal conduc-
tivity of a general two-dimensional region (heat conducting body)
with Neumann and Robin conditions at the boundaries as long as
the general two dimensional region can be mapped onto a regular
computational domain.

2. Governing equation

The mathematical formulation for the steady state heat con-
duction problem with linearly temperature - dependent thermal
conductivity is given by (see Fig. 1a)
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where kT ¼ aþ bT; a and b are constant and bs0.
The elliptic grid generation method is employed here to dis-

cretize the physical domain and approximate the derivatives of the
field variable (temperature) by algebraic ones. In this method, the
irregular physical domain is mapped from the x and y physical
plane onto the x and h computational plane (Fig. 1). Then the heat

conduction equation and the boundary conditions (Eqs. (1) to (3))
should be transformed from the x and y physical plane to the x and
h computational plane. More details on the implementation of the
elliptic grid generation technique and solution procedure for the
steady state heat conduction equation can be found in Ref. [48].
Here because the thermal conductivity is not constant and is line-
arly temperature dependent, we can expand Eq. (1) as follows
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we can substitute for Tx, Ty, Txx, and Tyy, using the transformation
relationships and finite difference expressions [48]:
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where

a ¼ x2h þ y2h

b ¼ xxxh þ yxyh

g ¼ x2x þ y2x (6)

are the coefficients obtained from the elliptic grid generation
method. By knowing the values for a and b, Eq. (5) may be solved to
obtain an expression for Ti;j. Eq. (5) is a quadratic one and an
algebraic software such as Maple may be used to solve the equation
in terms of Ti;j. The boundary condition equations also can be
expanded and solved in a similar way. The direct heat conduction
problem can be numerically solved to obtain the temperature dis-
tribution in the heat conducting body. By having the temperature
values at any grid nodes as well as a and b, the thermal conductivity
kT ¼ aþ bT can be calculated at any grid nodes ði; jÞ.

Fig. 1. Arbitrarily shaped two dimensional heat-conducting body (physical domain)
subjected to convective heat transfer on surfaces Gi ; i ¼ 2; 3;4 and heat flux _q on
surface G1 (a) and the corresponding computational domain (b). The thermal con-
ductivity of the body is kT .
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