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a  b  s  t  r  a  c  t

Set-membership  (SM)  estimation  implies  that the  computed  solution  sets  are  guaranteed  to contain  all
the feasible  estimates  consistent  with  the  bounds  specified  in the  model.  Two  issues  often  involved  in  the
solution  of  SM  estimation  problems  and  their  application  to  engineering  case studies  are considered  in
this  paper.  The  first one  is  the  estimation  of  derivatives  from  noisy  signals,  which  in a  bounded  uncertainty
framework  means  obtaining  an enclosure  by  lower  and  upper  bounds.  In this  paper,  we  improve  existing
methods  for  enclosing  derivatives  using  Higher-Order  Sliding  Modes  (HOSM)  differentiators  combining
filtering.  Our  approach  turns  the  use  of high  order  derivatives  more  efficiently  especially  when  the  signal
to differentiate  has  slow  dynamics.  The  second  issue  of interest  is  solving  linear  interval  equation  systems,
which  is  often  an ill-conditioned  problem.  This  problem  is reformulated  as  a  Constraint  Satisfaction
Problem  and  solved  by the combination  of  the  constraint  propagation  Forward  Backward  algorithm  and
the  SIVIA  algorithm.  The  two  proposed  methods  are  tested  on illustrative  examples.  The  two  methods  are
then used  in  a fault  detection  and  isolation  algorithm  based  on  SM parameter  estimation  that  is applied
to  detect  abnormal  parameter  values  in a  biological  case  study.

©  2017  Elsevier  Ltd. All  rights  reserved.

1. Introduction

This paper focuses on two mathematical problems encoun-
tered in several engineering problems: the calculus of uncertain
derivatives and conditioning problems involved in solving lin-
ear interval equation systems. These two issues are addressed
in a set-membership (SM) framework in which uncertainties are
characterized by simple bounds. SM estimation methods advanta-
geously provide guaranteed solutions, meaning that the computed
set estimates are guaranteed to contain all the feasible estimates
consistent with the specified bounds. SM estimation methods have
been successfully applied to many tasks [1–4]. SM estimation can
be based on interval analysis that was introduced by [5] and sev-
eral algorithms have been proposed along this line for nonlinear
systems (for more details, see [6,4,7]). The approaches dedicated
to linear systems are rather based on ellipsoid shaped methods
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(for example [8]), parallelotope or zonotope based methods [9].
The advantage of providing guaranteed results is unfortunately
often stained by the overestimation of the results. In this respect,
it is mandatory to carefully analyse every single step of SM esti-
mation methods to compensate for possible spurious uncertainty
propagation. In particular, the resolution of estimation problems
often requires to evaluate successive derivatives of signals, which
is known to be a tedious numerical problem, and/or to solve
systems of linear interval equations, which must often handle ill-
conditionment. This paper deeply inspects these two problems and
proposes improved solution methods.

Derivative estimation from noisy signals given by discrete mea-
surement samples is an important and difficult task in numerical
analysis, signal processing and control. It is well-known that it is
an ill-posed problem. In the literature, several classes of derivative
estimation methods have been proposed. The first class consists in
approximating the signal by polynomials using least-square esti-
mation and adding a regularization criterion [10,11]. Another class
consists in approximating the signal by a truncated Taylor expan-
sion and to operate in either the Mikusinski field [12,13] or the
distribution space [14]. Yet another class is based on sliding-mode
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differentiators [15,16]. In the frame of interval analysis, apart from
the classical finite difference that has been extended [17], there
are few works guaranteeing enclosures of successive derivatives.
Nevertheless, the estimation of derivatives is essential in many
basic algorithms such as the evaluation of centered inclusion func-
tions, Newton contractors, etc. In [18], the Higher-Order Sliding
Modes (HOSM) differentiators developed by Levant in 1998 have
been used to obtain an exact enclosure of derivatives required by
a fault detection method. The drawback of these differentiators is
that only the first derivative is calculated with reasonable over-
estimation contrary to higher order derivatives. In this paper, we
propose to combine the methods developed by Levant with a zero-
phase low-pass filtering algorithm, guaranteeing a robust enclosure
of the successive derivatives even for high orders. Some examples
are given and confirm the robustness of the method.

The problem of solving a linear interval system is considered
in the second part of the paper. Although the system is linear,
this problem is NP-hard due to the presence of interval matrices
[19]. Some algorithms for solving interval linear systems return a
box containing the convex hull of the solutions, which is not the
minimal enclosure [20]. Unlike direct algorithms for enclosing the
solution of an interval linear system [21,22], we rely on an iterative
method [20] because it advantageously allows one to control the
computation time. Our method assumes that an initial enclosure is
known from the knowledge of the system and applies contractions
using the Forward Backward Propagation algorithm [23] based on
interval Gauss-Seidel iterations. Then we use this solution to ini-
tialize a branch and bound algorithm, based on Set Inversion Via
Interval Analysis (SIVIA), which further improves the result. Some
details on contractors and the SIVIA algorithm can be found in
[23,6,24].

The last part of the paper integrates the two proposed methods
to improve an off-line previously developed FDI procedure for non-
linear dynamical systems based on SM parameter estimation [25].
The developed FDI procedure requires the estimation of derivatives,
sometimes of high order, from discrete measurement samples and
the solution of linear systems of interval equations involving blocks
of parameters.

The paper is organized as follows. Section 2 briefly introduces
the problem of enclosing successive derivatives of a signal cor-
rupted by bounded noise and the new method that we  propose
based on HOSM differentiation and filtering is presented. Bounded
noises are a natural way to model the realistic stochastic fluctu-
ations of a biological system, for example, that are caused by its
interaction with the external world. Bounded noise is also well-
adapted to sensors tolerances. The proposed method is applied
to classical examples which highlight its advantages. Section 3
explains the problem of solving linear interval systems, and exhibits
the sources of ill-conditioning. Our method based on contrac-
tors and set inversion is presented. Through some examples, the
results obtained by the proposed scheme are compared with those
obtained by classical solvers. In Section 4, the previously developed
methods are applied in a SM algorithm for FDI in nonlinear dynam-
ical systems. The application of this algorithm to a cell exchange
model is reported. Finally, Section 5 concludes the paper and pro-
vides some perspectives.

2. Derivative estimation

The aim of this section is to present a differentiator that pro-
vides robust exact intervals containing the successive derivatives of
a signal corrupted by a bounded noise whose bounds are supposed
known. Bounded noise is a convenient way to characterize uncer-
tainty when a more informative statistical model is not known. It
accounts for nonlinear phenomena like saturation which are often

encountered in practice. For example, bounded noise is a natural
way to model the realistic stochastic fluctuations of a biological
system, for example, that are caused by its interaction with the
external world [26].

The differentiator has been proposed by Levant in 1998 [15]
under the name of the Higher-Order Sliding Modes (HOSM) dif-
ferentiator. It is presented in the first part of this section. Although
other differentiators like the asymptotic differentiator [27] or the
high gain observer [28] have been proposed, the differentiator of
[15] advantageously provides exact differentiation in finite-time of
noise-free signals satisfying some Lipschitz constraint. That is why
we have built on this work.

Despite its advantages, the Higher-Order Sliding Modes (HOSM)
differentiator has the drawback that for a high derivative order
or for a significant noise, the intervals containing the derivative
estimates are very overestimated. Thus we propose an original
approach that provides tighter interval enclosures of derivatives
thanks to a low pass filter. This smoothing makes the enclosure of
high order derivatives more efficient specially when the signal to
be differentiated has slow dynamics.

Let us consider the following standard notations and definitions
[6]. A real interval [x] = [x, x̄]  is a connected and closed subset of
R. The notation x defines the real vector x = (x1, . . .,  xn)T, where
T stands for the transpose of the considered vector whereas [x]
defines an interval vector, also called a box. w represents the inter-
val width. If [x] = [x, x̄]  then w([x]) = x̄ −  x. In the same manner
w([x]) = max  (x̄ − x).

2.1. HOSM differentiator

In the works [15,29,16] concerning HOSM differentiators, the
signal y(t) to be differentiated is considered as a function defined
on [0, + ∞ [. It is supposed to be composed of a bounded Lebesgue-
measurable noise e(t) (bounded by a positive constant ˛) with
unknown features and an unknown base signal y0(t) with the mth
derivative having a known Lipschitz constant C > 0. The m succes-
sive derivatives of the signal y(t), i.e. y(1)(t), . . .,  y(m)(t) are estimated
by z1(t), . . .,  zm(t) for t ≥ tc as described below:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

˙z0 = v0,

v0 = −�0|z0 − y|
m

(m + 1) sign(z0 − y) + z1,

˙z1 = v1,

v1 = −�1|z1 − v0|
(m − 1)
m sign(z1 − v0) + z2,

...

żm−1 = vm−1,

vm−1 = −�m−1

∣∣zm−1 − vm−2

∣∣1
2 sign(zm−1 − vm−2)

+zm,
żm = −�m sign(zm − vm−1),

(1)

where �j ∈ R, j = 0, . . .,  m,  represent the differentiator param-
eters and tc is the convergence time of the differentiator which
depends on �j. Generally, the parameters �j, j = 0, . . .,  m,  are chosen
experimentally (for more details, see [15,29]). In other words, these
parameters must be re-evaluated for every new signal. This is not
surprising because it is well known that an ideal differentiator, i.e.
that can differentiate any signal, does not exist.
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