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a  b  s  t  r  a  c  t

A  new  formulation  is proposed  to directly  extend  the virtual  transfer  function  between  inputs  (VTFBI)
approach  to ill-conditioned  systems  with  dimensions  higher  than 2  × 2.  The  method  requires  only  a  single
correlated  component  and  is  applicable  to moderately  large  systems  of  up to around  six  outputs.  To  cater
for  systems  with  even  higher  dimensions,  an  indirect  approach  is further  introduced  based  on subsystem
decomposition  in  which  the  design  for  each  subsystem  achieves  D-optimality  in the  presence  of  active
output  variance  constraints.  New  measures  of sensitivity  to  measurement  inaccuracy  and  parameter
changes  are  also  introduced.  A  detailed  case  study  shows  that  both  direct  and  indirect  extensions  of  the
VTFBI  technique  outperform  competing  ones  in  terms  of accuracy  in the  estimation  of  singular  values,
robustness  towards  the  effect  of  noise  as well  as  effectiveness  for  application  in  model  based  control.  An
additional  advantage  of  the  proposed  approaches  is that their  performance  does  not  depend  significantly
on  the  specific  design  choices  made  within  these  methods.

© 2017  Elsevier  Ltd.  All  rights  reserved.

1. Introduction

Processes encountered in the industry are often multivariable.
Requirements for the identification of such systems are signifi-
cantly different from those for single-input single-output systems.
Accurate estimation of the individual transfer function elements in
a transfer function matrix may  not be sufficient to ensure robust
closed loop stability [1]. For model-based control such as model
predictive control (MPC), precise identification of the singular val-
ues is key to its successful implementation [2,3]. However, if the
system is ill-conditioned, estimation of the smallest singular value
is a challenging task which requires specially designed experi-
ments. In addition, these experiments not only have to take into
consideration operational constraints, but the costs incurred while
doing so need to be minimized [4].

The identification methods in the literature can generally be
classified into open loop methods [5–9], closed loop methods
[10–13] or a combination of both [3]. Both open loop and closed
loop approaches have their advantages and disadvantages. In gen-
eral, the low gain direction is more easily excited in the closed loop
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[10]. However, experiments in the closed loop come with the added
complexity of having to implement feedback controllers and to deal
with the bias in the estimates caused by the feedback [11,14]. On
the other hand, open loop approaches are free from the complexi-
ties resulting from the feedback but the perturbation signals must
be designed carefully to sufficiently excite the low gain direction. It
can be seen from [1] that both open loop and closed loop techniques
seem equally popular in commercial software.

Due to the different challenges, open loop techniques require
extra care in the signal design whereas closed loop ones necessi-
tate more effort in the estimation. The focus of the current paper is
on open loop methods. In [5], low amplitude uncorrelated binary
signals were used to perturb the high gain direction while high
amplitude correlated binary signals were utilized to excite the
low gain direction. A similar idea was proposed in the frequency
domain using a modified “zippered” power spectrum [6] consist-
ing of alternating correlated harmonics with high levels of power
and uncorrelated harmonics with lower levels of power. The design
is realized using multisine signals. Another technique makes use of
“rotated inputs” where the rotation can be applied to binary sig-
nals as well as multisine signals [7,15]. The technique is based on a
geometric approach. Recently, an open loop method based on vir-
tual transfer function between inputs (VTFBI) [9] was introduced,
with a geometric interpretation for 2 × 2 systems. The method uses
a correlated harmonic to increase the excitation in the low gain
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direction in combination with uncorrelated harmonics which allow
the contributions of the different inputs to be easily decoupled.
The technique was shown to be able to achieve high estimation
accuracy due to improved distribution of power to uncorrelated
harmonics as well as robustness to changes in the gain directions
with frequency.

In the current paper, the extension of the VTFBI technique to
higher-dimensional systems is investigated, noting that most stud-
ies in the literature on ill-conditioned systems are limited to 2 × 2
systems [16]. The main contributions are (i) a formulation of the
direct extension of the VTFBI approach to higher-dimensional sys-
tems for moderately large systems with an advantage of requiring
only a single correlated harmonic, (ii) an indirect extension appli-
cable to higher-dimensional systems utilizing a larger number of
correlated harmonics designed to achieve D-optimality, (iii) new
measures of sensitivity to measurement inaccuracy and param-
eter changes, (iv) a detailed case study presenting for the first
time a comparison of the VTFBI method with the modified zip-
pered spectrum approach (which is at present one of the most
successful methods [17]) and the rotated inputs approach on a
higher-dimensional system, and (v) in-depth analysis of the effect
of different choices of subsystem pairing related to the indirect
extension.

The rest of the paper is organized as follows. Section 2 pro-
vides a brief introduction of the VTFBI technique. Direct and indirect
extensions of the VTFBI approach are discussed in Section 3. New
sensitivity measures are proposed in Section 4. A detailed case
study on a 3 × 3 system is described in Section 5. Finally, concluding
remarks are drawn in Section 6.

2. VTFBI technique

Consider a multivariable system with n inputs u1, u2, . . .,  un and
n outputs y1, y2, . . .,  yn defined by

Y(s) = G(s)U(s), G(s) =

⎡
⎢⎢⎢⎣
G11(s) G12(s) ... G1n(s)

G21(s) G22(s) ... G2n(s)

: : :

Gn1(s) Gn2(s) ... Gnn(s)

⎤
⎥⎥⎥⎦ (1)

where U(s) = [U1(s) U2(s) ... Un(s) ]T and Y(s) =[
Y1(s) Y2(s) ... Yn(s)

]T
are vectors of the Laplace trans-

form of the inputs and outputs, respectively, and G(s) is the
transfer function matrix. It is assumed that at least one element in
each row and column of G(s) is nonzero. Applying singular value
decomposition

G(s) =
[

b1(s) b2(s) ... bn(s)
]

×

⎡
⎢⎢⎢⎣
�1(s) 0 ... 0

0 �2(s) ... 0

: : :

0 0 ... �n(s)

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

aT1(s)

aT2(s)

:

aTn(s)

⎤
⎥⎥⎥⎦ (2)

where a(s) and b(s) are the singular vectors of the input and
output, respectively, and the singular values are arranged such
that �1(s) ≥ �2(s) ≥ ... ≥ �n(s). High and low gain directions refer
to singular vectors corresponding to the maximum and minimum
singular values, respectively.

In the VTFBI technique proposed for a 2 × 2 system with trans-

fer function matrix G(s) =
[
G11(s) G12(s)
G21(s) G22(s)

]
, the idea is to improve

uniformity in the output state-space so that the low gain direction
is sufficiently excited. The geometric approach aims to align a single

correlated component of the input, selected at a frequency ω0, to
the direction where the output trajectory in the state-space traces
a circle of radius r, such that

y1(t) = r sin(ω0t), (3A)

y2(t) = ± r cos(ω0t). (3B)

By taking the Laplace transform of (3A) and (3B), the relationship
between u1 and u2 at ω0 can be derived and this is defined as the
VTFBI H(s) where [9]

H(s) = U2(s)
U1(s)

= −G21(s)Y1(s) + G11(s)Y2(s)
G22(s)Y1(s) − G12(s)Y2(s)

= ±sG11(s) − ω0G21(s)
∓sG12(s) + ω0G22(s)

. (4)

Besides the correlated component, the input signals have uncor-
related components covering the frequency range of interest. These
enable easy decoupling of the contributions of the different inputs
and serve to ensure the accuracy of the individual transfer function
estimates. Thus with the VTFBI design, both the issues of gain direc-
tionality and model mismatch are taken care of. The uncorrelated
components are implemented using persistently exciting multi-
sines to ensure identifiability. The number of excited uncorrelated
harmonics in each signal must be at least equal to the maximum
order of the transfer functions perturbed by the signals [14]. This
requirement is usually not difficult to satisfy in practice.

3. Extension to higher-dimensional systems

3.1. Direct extension

For an n × n system with n > 2, the direct extension aims to
achieve output trajectories as close as possible to circles when
viewed from two-dimensional planes, using only a single correlated
component of the input. The optimization problem is formulated
as

 opt = arg min
 

⎡
⎣∑
˘ij

min

{
(‖ i −  j‖ − �

2
)
2
,

(‖ i −  j‖ − 3�
2

)
2
}]

(5)

where   = [ 1  2 ...  n ] and �ij denotes all combinations of
i and j, for i, j = 1, 2, . . .,  n and i /= j. In (5), 0 ≤  i < 2�; however, for
the sake of compactness in the subsequent parts of the paper, the
phases are sometimes written outside this range but this should
not cause any confusion since it is understood that the phases are
cyclic with a period of 2�. Without loss of generality,  1 = 0.

For n = 3, two solutions exist where the phases are equally
spaced, corresponding to  opt =

[
0 ±2�/3 ±4�/3

]
. The out-

puts can be expressed as

y1(t) = r sin(ω0t) ⇒ Y1(s) = rω0

s2 + ω2
0
, (6A)

y2(t) = r(−1
2

sin(ω0t) ±
√

3
2

cos(ω0t))

⇒ Y2 (s) = r

(
−ω0 ±

√
3s

2
(
s2 + ω2

0

)
)

, (6B)

y3(t) = r

(
−1

2
sin (ω0t) ∓

√
3

2
cos (ω0t)

)

⇒ Y3(s) = r

(
−ω0 ∓

√
3s

2
(
s2 + ω2

0

)
)

. (6C)

Writing the inputs in the form Ui(s) = r
(
ciω0+dis
s2+ω2

0

)
; i = 1, 2, 3; the

values of di = [ ci di ]
T which specify the input amplitudes and
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