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a b s t r a c t

This technical communique extends the recent results of Geromel and Gabriel (2015) to H∞ sampled-
data control design of Markov jump linear systems (MJLS). It fulfills a lack of a specific necessary and
sufficient result in the literature of sampled-data control ofMJLS in the context ofH∞ performance. Mean
square stabilizability and performance determination are addressed and discussed in a unified theoretical
viewpoint. As a natural consequence, it is shown that the previous result of Geromel and Gabriel (2015) is
obtained as a particular case. A globally uniformly convergent algorithm is proposed to solve the design
conditions. The theory is illustrated by means of an example.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Sampled-data is becoming more and more important in the
area of deterministic dynamic system control design. It is mostly
employed in modern control structures like digital control (in a
general framework, see Chen and Francis (1995), Ichikawa and
Katayama (2001) and Levis, Schluete, and Athans (1971) and the
references therein). For stochastic systems, however, sampled-
data control design did not receive as much attention as it de-
serves keeping in mind the theoretical and practical importance
of Markov jump linear systems, see Boukas (2006), Hu, Shi, and
Frank (2006) and Mao (2013). To fill this gap the aforementioned
class of sampled-data control design is addressed and the main
result of Geromel and Gabriel (2015) is generalized to cope with
H∞ performance. The independence (in probabilistic terms) of
the sampling and parameter jump instants is a realist assumption
that makes the problem simple to solve. However, determining a
solution to the optimality conditions (if any) is not a simple task
and requires, in general, the adoption of an interactive procedure
similar to the one proposed in Geromel and Gabriel (2015) for the
H2 case. A global monotone convergent algorithm able to treatH∞
and H2 problems in a unified manner is proposed.
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This technical communique provides a necessary and sufficient
condition that extends the results of Geromel and Gabriel (2015)
in which optimal sampled-data control of MJLS is treated by a
stochastic hybrid linear system approach. See also Ichikawa and
Katayama (2001) for a collection of useful results in the determin-
istic context. The set of natural and real numbers are denoted by N
and R, respectively.

2. Problem statement

Consider a MJLS with state space realization

ẋ(t) = Aθ (t)x(t)+ Bθ (t)u(t)+ Eθ (t)w(t), (1)

z(t) = Cθ (t)x(t)+ Dθ (t)u(t), (2)

where x ∈ Rn, u ∈ Rm, w ∈ Rr , and z ∈ Rs are the
state, the control, the exogenous input, and the controlled output,
respectively. We denote θ (t) ∈ K = {1, 2, . . . ,N}, a time-
varying function governed by a continuous-time Markov process
with transition rate matrix {λij} = Λ ∈ RN×N . It is assumed
that the system evolves from initial conditions x(0) = 0 and
θ (0) = θ0, with initial probability P(θ0 = i) = πi0, ∀i ∈ K.
As usual in the context of H∞ performance, the exogenous input
w ∈ L2(Ω,F,P), or just L2, is a norm bounded random process,
that is ∥w∥22 =

∫
∞

0 E{w(t)′w(t)}dt < ∞, where (Ω,F,P) is a
complete probability space equipped with a filtration Ft , with t ∈
R+, see Costa, Fragoso, and Todorov (2013). The sequence {tk}k∈N
is defined by successive sampling instants such that t0 = 0 and
tk+1 − tk = T > 0,∀k ∈ N. The class of admissible control signals
is characterized by a state feedback sampled-data linear control of
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the form u(t) = Lθ (tk)x(tk), ∀t ∈ [tk, tk+1), where matrices {Li}i∈K
are the state feedback gains.

System (1)–(2) is reformulated as an alternative but equivalent
hybrid system with special matrix structures

ξ̇ (t) =
[
Aθ (t) Bθ (t)
0 0

]
ξ (t)+

[
Eθ (t)
0

]
w(t), (3)

z(t) =
[
Cθ (t) Dθ (t)

]
ξ (t), (4)

ξ (tk) =
[

I 0
Lθ (tk) 0

]
ξ (t−k ) (5)

subject to the initial conditions ξ (0−) = ξ0 = 0 and θ (0−) =
θ (0) = θ0 and valid ∀t ∈ [tk, tk+1), ∀k ∈ N. It is called Hybrid
Markov Jump Linear System (HMJLS) and it is related to the closed-
loop version of (1)–(2) through ξ (t)′ = [x(t)′ u(t)′], see Geromel
and Gabriel (2015) for details. It is of great interest to solve the
optimal control problem

inf
L1,...,LN

{
γ 2
: sup

w∈L2

∥z∥22−γ 2
∥w∥22 ≤ 0

}
, (6)

whose solution, in the present context, is not available in the
literature to the best of the authors’ knowledge.

3. Hybrid MJLS

Consider the following Hybrid MJLS

ξ̇ (t) = Fθ (t)ξ (t)+ Jθ (t)w(t), (7)

z(t) = Gθ (t)ξ (t), (8)

ξ (tk) = Hθ (tk)ξ (t
−

k ), (9)

evolving from arbitrary initial conditions ξ (0−) = ξ0 and θ (0−) =
θ (0) = θ0. Clearly this model contains, as a particular case, the
one given in (3)–(5) with special structured matrices. Consider the
coupled differential Riccati equations

Ṗi + F ′i Pi + PiFi + γ−2PiJiJ ′i Pi
+

∑
j∈K

λijPj = −G′iGi, i ∈ K, (10)

whose solution, whenever exists, is unique, bounded and satisfies
Pi(t) ≥ 0, ∀t ∈ [0, T ] and T > 0, provided that Pi(T ) ≥ 0, ∀i ∈ K,
see Costa et al. (2013). For γ > 0 big enough, Eq. (10) collapses to
the coupled differential Lyapunov equations

Ṗi + F ′i Pi + PiFi +
∑
j∈K

λijPj = −G′iGi, i ∈ K. (11)

which always admits a bounded solution due to its linearity, (Costa
et al., 2013). Thus, for a given γ > 0 ourmain purpose is to evaluate
the function

ργ (ξ0) = sup
w∈L2

∥z∥22−γ 2
∥w∥22 (12)

which is bounded whenever the system is mean square stable.
The constraint in problem (6) can be alternatively expressed as
ργ (0) ≤ 0 and the optimal value of ρ∞(ξ0) = ∥z∥22 follows from
w ≡ 0 ∈ L2. Actually, the optimal solution wγ ∈ L2 of (12) goes
to zero as γ → ∞. If it went to some trajectory w∗ ∈ L2 with
∥w∗∥ ̸= 0 since the corresponding output z∗ ∈ L2 is bounded, the
supremum would go to −∞. Then, H2 performance optimization
is readily expressed through (12) as well. We are now in position
to state the main result of this note.

Theorem 1. Let T > 0 and γ > 0 be given. There exist matrices
Si > 0 satisfying the two-point boundary value problem (TPBVP)
constituted by the coupled differential Riccati equations (10) together
with the initial and final boundary conditions

Pi(0) < Si , Pi(T ) ≥ H ′i SiHi, (13)

∀i ∈ K, if and only if the HMJLS (7)–(9) is mean square stable and the
function (12) satisfies

ργ (ξ0) <
∑
i∈K

πi0ξ
′

0H
′

i SiHiξ0. (14)

Proof. First, define ν(t) = (ξ (t), θ (t), t) and

V (ν(t)) = ξ (t)′Pθ (t)(t)ξ (t), (15)

∀t ∈ [tk, tk+1), k ∈ N. Due to its time-invariant nature, the solution
Pi(t) of the TPBVP is such that Pi(t) = Pi(t − tk),∀i ∈ K and
∀t ∈ [tk, tk+1), ∀k ∈ N such that k ≥ 1. As a consequence,
Pi(tk) = Pi(0) and Pi(t−k+1) = Pi(T ), ∀i ∈ K. Considering (10), due
to the fact that (7)–(9) is a particular case of an Itô process, the
well known Dynkin’s formula, see Costa et al. (2013), implies that,
∀w ∈ L2,

V (ν(tk))− E
{
V (ν(t−k+1)) | ν(tk)

}
= E

{∫ tk+1

tk

∥γ−1J ′θ (t)Pθ (t)(t)ξ (t)− γw(t)∥2dt | ν(tk)
}

+ E
{∫ tk+1

tk

[z(t)′z(t)− γ 2w(t)′w(t)]dt | ν(tk)
}

≥ E
{∫ tk+1

tk

[z(t)′z(t)− γ 2w(t)′w(t)]dt | ν(tk)
}

. (16)

On the other hand, making use of the initial boundary conditions,
for non null trajectories, the quadratic function (15) evaluated
at t = tk is such that V (ν(tk)) < ξ (tk)′Sθ (tk)ξ (tk). Analogously,
evaluating (15) at t−k+1 implies

E{ V (ν(t−k+1)) | ν(tk)}

= E
{
ξ (t−k+1)

′Pθ (t−k+1)
(t−k+1)ξ (t

−

k+1) | ν(tk)
}

≥ E
{
ξ (tk+1)′Sθ (tk+1)ξ (tk+1) | ν(tk)

}
(17)

since the final boundary condition from (13) yields Pθ (t−k+1)
(t−k+1) ≥

H ′θ (tk+1)Sθ (tk+1)Hθ (tk+1) and the stochastic process imposes θ (t−k+1) =
θ (tk+1) with probability one (almost surely). As a consequence,
defining v(ν(tk)) ≜ ξ (tk)′Sθ (tk)ξ (tk) and using the lower and upper
bounds just calculated, inequality (16) becomes

E{v(ν(tk+1)) | ν(tk)} − v(ν(tk))

< −E
{∫ tk+1

tk

[z(t)′z(t)− γ 2w(t)′w(t)]dt | ν(tk)
}

, (18)

∀w ∈ L2. Because Si > 0, ∀i ∈ K, then v(ν(tk)) is positive definite
and E{v(ν(tk))} can be considered a valid Lyapunov function asso-
ciated with the discrete-time stochastic process ξ (tk) → ξ (tk+1),
k ∈ N. Hence, two consequences can be drawn. First, due to the
strict inequality in (18), imposing w ≡ 0 ∈ L2, there exists ε > 0
sufficiently small such that E{v(ν(tk+1))|ν(tk)} ≤ (1 − ε)v(ν(tk)),
which implies that E{v(ν(tk))} → 0 as k ∈ N goes to infinity.
Consequently, E{∥ξ (t)∥2} → 0 as t → ∞; hence mean square
stability holds, see Kushner (1967). Summing up (18) for all k ∈ N,
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