
Automatica 85 (2017) 153–157

Contents lists available at ScienceDirect

Automatica

journal homepage: www.elsevier.com/locate/automatica

Brief paper

Time-optimal velocity tracking control for differential drive robots✩

Hasan A. Poonawala b, Mark W. Spong a

a Erik Jonsson School of Engineering & Computer Science, University of Texas at Dallas, 800 W Campbell Rd, Richardson, TX, 75252, USA
b Institute for Computational Engineering & Sciences, University of Texas at Austin, 201 E 24th St, Austin, TX 78705, USA

a r t i c l e i n f o

Article history:
Received 13 May 2016
Received in revised form 15 May 2017
Accepted 15 June 2017

Keywords:
Time-optimal control
Differential drive robots
Regular synthesis

a b s t r a c t

Nonholonomic wheeled mobile robots are often required to implement control algorithms designed for
holonomic kinematic systems. This creates a velocity tracking problem for an actual wheeled mobile
robot. In this paper, we investigate the issue of tracking a desired velocity in the least amount of time, for
a differential drive nonholonomic wheeled mobile robot with torque inputs. The Pontryagin Maximum
Principle provides time-optimal controls that must be implemented as open-loop commands to the
motors. We propose two discontinuous state-based feedback control laws, such that the associated
closed-loop systems track a desired velocity in minimum time. The feedback control laws are rigorously
shown to produce only time-optimal trajectories, by constructing a regular synthesis for each control
law. The availability of these time-optimal feedback control laws makes re-computation of open-loop
time-optimal controls (due to changes in the desired velocity or input disturbances) unnecessary.

© 2017 Published by Elsevier Ltd.

1. Introduction

Differential drive systems are a popular choice for mobile robot
platforms. This popularity can largely be attributed to their ability
to turn in place, whichmakes them ideal for navigation in cluttered
environments. Another advantage is their simplermechanical con-
struction, especially when compared to holonomic wheeled mo-
bile robots. The control of nonholonomic wheeled mobile robots
has a long history (Bloch, 2003; Brockett, 1983; Park & Kuipers,
2011; Ryan, 1994), with the differential drive robot system being
a common example. The most important control problems for this
type of robot are the point stabilization problem (Samson, 1991)
and the tracking of a reference trajectory (d’Andréa-Novel, Bastin,
& Campion, 1992; Fierro & Lewis, 1995; Huang, Wen, Wang, &
Jiang, 2014; Jiangdagger & Nijmeijer, 1997).

The field of multi-robot coordination has been an active area
of research in recent years. Control methods such as consensus
algorithms (Olfati-Saber, Fax, &Murray, 2007) and behavior-based
controls (Balch & Arkin, 1998) can achieve a wide variety of
tasks. In general, these methods often consider single integrator
dynamics, and the commanded control for each robot is a velocity
in the plane. Such control laws can be implemented in an exact
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manner only on holonomic wheeled mobile robots. Furthermore,
consider a team of multiple differential drive robots that are to
be operated by a human using some input device. Typically, the
human may command a motion towards a particular direction.
Depending on the headings of the robots, they may or may not be
able to move in that direction instantaneously.

In this paper, we are concerned with controlling the planar
velocity of the differential drive robot. The goal is to find controls
that change the current velocity of the robot to some desired
velocity in the plane as fast as possible. The effect of implementing
such controls is to make the robots ‘appear’ to be holonomic, with
as small a delay as possible in tracking of commanded velocities.
Previous work on time-optimal control for the differential drive
robot has focused on control of the robot’s position (Reister & Pin,
1994; Renaud & Fourquet, 1997; Van Loock, Pipeleers, & Swevers,
2013), and not its velocity.

In prior work (Poonawala & Spong, 2015), we derived the
time-optimal controls for a simplified differential drive robot as
functions of time by applying the Pontryagin Maximum Principle.
The problem is interesting due to the presence of singular arcs,
wherein certain control inputs can be arbitrary functions of time.
An important question is related to the robustness of the open-
loop controls in Poonawala and Spong (2015) to errors such as
switching at the wrong time, input disturbances, and measure-
ment noise. These practical issues may be overcome by defining
a (discontinuous) state-based feedback control law such that the
resulting closed-loop trajectories from any initial condition are
always time-optimal. Such a control law is derived from a regular
synthesis. Obtaining a regular synthesis from extremal controls
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Fig. 1. The differential drive robot with linear speed v, angular velocity ω and
desired velocity vd .

is non-trivial, and is rarely performed in the literature on time-
optimal control. Yet, once a regular synthesis has been obtained,
a feedback control law which achieves time-optimal transitions
can be defined. Furthermore, the synthesis may be used to analyze
issues such as robustness to measurement noise.

The main contribution of this paper is to derive a regular syn-
thesis for a torque controlled differential drive system. The regu-
lar synthesis is then used to rigorously show that two proposed
discontinuous state-based feedback control laws will yield time-
optimal velocity tracking for the differential drive robot.

2. Differential drive robot

A sketch of a differential drive robot is shown in Fig. 1. The
configuration of the robot is given by (x, y, θ ) ∈ R3, where (x, y)
is the cartesian position of the centroid of the robot in an inertial
reference frame and θ is the heading angle of the robot. Note that
the heading angle is measured with respect to the x-axis of the
world frame, anddepends on the direction of the axis of thewheels.
The robot has a forward speed v ∈ R and angular velocity ω ∈ R
as shown in Fig. 1. The desired velocity vd ∈ R2 is given by the
dashed vector, with magnitude vd = ∥vd∥. However, the robot’s
instantaneous velocity lies along the heading direction indicated
by the dotted vector, with magnitude v. The magnitude of velocity
v and robot heading θ must be controlled such that the robot’s
instantaneous velocity matches the desired one.

Let u1 and u2 be the net torques at the right and left wheels
respectively. As described in Sarkar, Yun, and Kumar (1994), the
dynamic equations of motion for the differential drive robot are
given by

mv̇ =
r
2
u1 +

r
2
u2, (1a)

θ̇ = ω, and (1b)

Jr ω̇ =
r
2b

u1 −
r
2b

u2, (1c)

where m is the effective mass of the robot, Jr is the effective
rotational inertia of the robot about the vertical axis through the
center of the wheel base, r is the radius of the wheel, and 2b is the
distance between the wheels respectively.

2.1. Problem statement

Consider the differential drive robot with dynamics (1). Let the
desired velocity be vd. Let θd be the constant angle that vd makes

with the x-axis of the coordinate system in which (x, y) is defined.
Let the torque inputs u1 and u2 satisfy ∥u1∥ ≤ um and ∥u2∥ ≤ um
respectively, where um > 0 denotes the maximum achievable
torque at each wheel. Derive a state-based feedback control law
such that the θ (t) → θd and v(t) → ∥vd∥ in the least amount of
time possible.

3. Extremal controls

The state of the differential drive robot is taken as q =

(v, θ, ω)T ∈ R3, and its dynamics q̇ = f (q, u) are given by (1c).
Note that θ is treated as a real number instead of an element
of the manifold S1. The input space U ⊂ R2 is [−um, um] ×

[−um, um]. The problem in Section 2.1 is equivalent to finding a
control input that results in a trajectory which begins in initial
state q0 = (v0, θ0, ω0) ∈ R3 and reaches a desired final state
qd = (∥vd∥, θd, 0) ∈ R3 in the least amount of time possible. We
will say that such a control achieves a transition from q0 to qd, in
minimum time.

Since f (q, u) = f (q + [v, θ, 0]T , u), we can change the origin
of the coordinate system such that the desired final state becomes
the origin (0, 0, 0). This change of origin does not change the time-
optimal control associated with the desired transition between
states. The problem in Section 2.1 then becomes that of finding a
time-optimal control that results in a transition to the origin for
any initial state in R3. For the remainder of the paper we denote
the new initial state as q0, and the new final state as qd, which is
now the origin.

An admissible control u(t) defined on any finite time interval
I = [0, T ] is one such that u(t) ∈ U for all t ∈ I . Let u(t) defined on
I be an admissible control which achieves such a transition from
q0 to the origin. The pair (q(t), u(t)) is referred to as a controlled
trajectory from q0 to the origin. The final time T for a transition from
q0 to the origin depends on the control and q0, but we suppress this
dependence when using the symbol I .

The Pontryagin Maximum Principle (Mauder, 2012; Schattler
& Ledzewicz, 2012; Sussmann & Tang, 1991; Wu, Chen, & Woo,
2000) can be used to find the time-optimal controlled trajectories,
since it specifies necessary conditions that the trajectories must
satisfy. Any controlled trajectorymeeting the necessary conditions
is called an extremal. In the case of extremal (q∗(t), u∗(t)), we refer
to q∗(t) as the extremal trajectory and u∗(t) as the extremal control.

The application of the PontryaginMaximum Principle results in
the conclusion that all extremal controls defined over time interval
I consist of only two possible types (Poonawala & Spong, 2015):

C1 At least one motor has a constant torque with value um or
−um over I .

C2 Bothmotors have piecewise constant torques (with possible
values in {−um, +um}) with exactly one switch for each
motor at time instants t1 and t2 such that t1, t2 ∈ (0, T ).

The C1 control corresponds to a singular extremal control, since
although one motor torque is constant, the other motor torque
can be an arbitrary function of time. It is the presence of singular
extremals that makes this problem interesting. As shown in Poon-
awala and Spong (2015), for every transition corresponding to a C1
control where one motor torque is arbitrary, there is a C1 control
that achieves the same transition in the same time, where that
motor switches no more than twice between its maximum values.
Therefore, we can now only consider extremals that consist of no
more than two time-instants of switching. We can represent an
extremal as a sequence of time-intervals called phases. During each
phase, the control input is constant. The switching of the motor
torques occurswhen thephase changes. Therewill be nomore than
three phases for any such extremal.



Download English Version:

https://daneshyari.com/en/article/4999690

Download Persian Version:

https://daneshyari.com/article/4999690

Daneshyari.com

https://daneshyari.com/en/article/4999690
https://daneshyari.com/article/4999690
https://daneshyari.com

