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a b s t r a c t

This paper studies consensus problems for multi-agent systems defined on directed graphs where the
consensus dynamics involves general nonlinear and discontinuous functions. Sufficient conditions, only
involving basic properties of the nonlinear functions and the topology of the underlying graph, are derived
for the agents to converge to consensus.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Nonlinear agreement protocols have recently attracted the at-
tention of many researchers. They may arise due to the nature of
the controller, see e.g. Jafarian and De Persis (2015) and Saber and
Murray (2003), or may describe the physical coupling existing in
the network, see e.g. Bürger, Zelazo, andAllgöwer (2014) andMon-
shizadeh and De Persis (2015). In this paper, we consider a general
nonlinear consensus protocol. The topology among the agents is
assumed to be adirected graph containing a directed spanning tree,
which for the linear consensus protocol is known to be a sufficient
and necessary condition for reaching state consensus.

Previous work related to this paper can be divided into two
categories, depending on whether the dynamical systems are con-
tinuous or not. For the case of continuous dynamical systems,
closely related to this paper are Lin, Francis, and Maggiore (2007)
and Papachristodoulou, Jadbabaie, and Münz (2010). In Pa-
pachristodoulou et al. (2010), a general first-order consensus pro-
tocol with a continuous nonlinear function is considered for the
case that there is delay in the communication. In Lin et al. (2007),
the authors considered a nonlinear consensus protocol with Lip-
schitz continuous functions, under a switching topology. For the
case of discontinuous dynamical system, Cortés (2006) is one of
the major motivations of this paper. Nonlinearities of the form of
sign functions were considered in Cortés (2006), where the notion
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of Filippov solutions is employed. However, in order to guarantee
asymptotic consensus of the second network protocol in Section
4 of Cortés (2006), further conditions turn out to be necessary.
This is formulated as the main result in Section 3.2 of this paper.
In De Persis and Frasca (2013), the authors considered a similar
control protocol as in Cortés (2006) in a hybrid dynamical systems
framework with a self-triggered communication policy, which
avoids the notion of Filippov solutions. In addition, in De Persis
and Frasca (2013) practical consensus is considered, that is, con-
sensuswithin a predefinedmargin. The results presented in Cortés
(2006) and De Persis and Frasca (2013) are restricted to undirected
graphs. In Dimarogonas and Johansson (2010), the authors con-
sidered quantized communication protocolswithin the framework
of hybrid dynamical systems, without using the notion of Filippov
solutions.

The contribution of this paper is to provide a uniform frame-
work to analyze the convergence towards consensus of a first-
order consensus protocol for a very general class of discontinuous
nonlinear functions, under theweakest fixed topology assumption,
i.e., a directed graph containing a directed spanning tree. The
analysis is conducted with the notion of Filippov solutions, and
generalizes and corrects the second network consensus protocol
in Cortés (2006).

The structure of the paper is as follows. In Section 2, we in-
troduce some terminology and notation in the context of graph
theory and stability analysis of discontinuous dynamical systems.
The main results are presented in Theorems 7 and 19 in Section 3.
The general problem is introduced in Section 3.1, whereafter in
Sections 3.2 and 3.3 two important subcases are considered, which
are then combined in Section 3.4. In Section 4 we study error
dynamics corresponding to the systems considered in Section 3.2,
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and provide sufficient conditions for the equivalence between
the convergence of the error to zero and the convergence of the
original states to consensus. Conclusions follow in Section 5.

2. Preliminaries and notations

In this section we briefly review some notions from graph
theory, and give some definitions and notation regarding Filippov
solutions.

Let G = (V, E, A) be a weighted digraph with node set V =

{v1, . . . , vn}, edge set E ⊆ V × V , and weighted adjacency matrix
A = [aij] with nonnegative adjacency elements aij. An edge of G
is denoted by eij := (vi, vj) and we write I = {1, 2, . . . , n}. The
adjacency elements aij are associated with the edges of the graph
such that aij > 0 if and only if eji ∈ E , while aii = 0 for all i ∈ I. For
undirected graphs A = A⊤.

The set of neighbors of node vi is denoted by Ni := {vj ∈ V :

eji ∈ E}. For each node vi, its in-degree and out-degree are defined
as

degin(vi) =

n∑
j=1

aij, degout(vi) =

n∑
j=1

aji.

The degree matrix of the digraph G is a diagonal matrix ∆ where
∆ii = degin(vi). The graph Laplacian is defined as L = ∆ − A and
satisfies L1 = 0, where 1 is the n-vector containing only ones. We
say that a node vi is balanced if its in-degree and out-degree are
equal. The graph G is called balanced if all of its nodes are balanced
or, equivalently, if 1⊤L = 0.

A directed path from node vi to node vj is a chain of edges from
E such that the first edge starts from vi, the last edge ends at vj and
every edge in between starts where the previous edge ends. If for
every two nodes vi and vj there is a directed path from vi to vj, then
the graph G is called strongly connected. A subgraph G′

= (V ′, E ′, A′)
of G is called a directed spanning tree for G if V ′

= V , E ′
⊆ E , and for

every node vi ∈ V ′ there is exactly one node vj such that eji ∈ E ′,
except for one node, which is called the root of the spanning tree.
Furthermore, we call a node v ∈ V a root of G if there is a directed
spanning tree for G with v as a root. In other words, if v is a root of
G, then there is a directed path from v to every other node in the
graph. A digraph G is called weakly connected if Go is connected,
where Go is the undirected graph obtained from G by ignoring the
orientation of the edges.

The multi-dimensional saturation function sat and sign func-
tion sign are defined as follows. For any x ∈ Rn,

sat(x ; u−, u+)i =

⎧⎨⎩
u−

i if xi < u−

i ,

xi if xi ∈ [u−

i , u+

i ],

u+

i if xi > u+

i

i ∈ I, (1)

sign(x)i =

{
−1 if xi < 0,
0 if xi = 0,
1 if xi > 0,

i ∈ I, (2)

where u− and u+ are n-vectors containing the lower and upper
bounds respectively.

With R−, R+ and R⩾0 we denote the sets of negative, pos-
itive and nonnegative real numbers respectively. The vectors
e1, e2, . . . , en denote the canonical basis of Rn. The ith row and jth
column of a matrix M are denoted by Mi· and M·j respectively. For
the empty set, we adopt the convention that max∅ = −∞.

In the rest of this sectionwe give somedefinitions and notations
regarding Filippov solutions (see, e.g., Cortés (2008)). Let F be a
map from Rn to Rn, and let 2Rn

denote the collection of all subsets
of Rn. The map F is essentially bounded if there is a bound B such
that ∥F (x)∥2 < B for almost every x ∈ Rn. The map F is locally
essentially bounded if the restriction of F to every compact subset of

Rn is essentially bounded. The Filippov set-valuedmap of F , denoted
F[F ] : Rn

→ 2R
n
, is given as

F[F ](x) ≜
⋂
δ>0

⋂
µ(S)=0

co{F (B(x, δ) \ S)}, (3)

where B(x, δ) is the open ball centered at x with radius δ > 0,
S ⊂ Rn, µ denotes the Lebesgue measure and co denotes the
convex closure. The zeromeasure set S is arbitrarily chosen. Hence,
the setF[F ](x) is independent of the value of F (x). If F is continuous
at x, then F[F ](x) = {F (x)}. A Filippov solution of the differential
equation ẋ(t) = F (x(t)) on [0, t1] ⊂ R is an absolutely continuous
function x : [0, t1] → Rn that satisfies the differential inclusion

ẋ(t) ∈ F[F ](x(t)) (4)

for almost all t ∈ [0, t1]. Let f be a map from Rn to R. We use the
same definition of regular function as in Clarke (1990) and recall
that convex functions are regular. If f : Rn

→ R is locally Lipschitz,
then its generalized gradient ∂ f : Rn

→ 2R
n
is defined by

∂ f (x) := co{ lim
i→∞

∇f (xi) | xi → x, xi ̸∈ S ∪ Ωf }, (5)

where ∇ denotes the gradient operator, Ωf ⊂ Rn denotes the set
of points where f is not differentiable, and S ⊂ Rn is an arbitrary
set of measure zero. (∂ f (x) is independent of the choice of S Clarke
(1990).) Given a set-valued map F : Rn

→ 2R
n
, the set-valued

Lie derivative L̃F f : Rn
→ 2R of a locally Lipschitz function

f : Rn
→ Rwith respect to F at x is defined as

L̃F f (x) := {a | ∃ν ∈ F(x) s.t. ζ⊤ν = a ∀ζ ∈ ∂ f (x)}.

A Filippov solution t ↦→ x(t) ismaximal if it cannot be extended
forward in time. Since the Filippov solutions of a discontinuous
system (4) are not necessarily unique,weneed to specify two types
of invariant sets. A set R ⊂ Rn is called weakly invariant for (4) if,
for each x0 ∈ R, at least one maximal solution of (4) with initial
condition x0 is contained in R. Similarly, R ⊂ Rn is called strongly
invariant for (4) if, for each x0 ∈ R, every maximal solution of
(4) with initial condition x0 is contained in R. For more details,
see Cortés (2008).

3. Main results

3.1. Problem formulation

In this work we consider a network of n agents, who communi-
cate according to a communication topology given by a weighted
directed graph G = (V, E, A). In this network, agent i receives
information from agent j if and only if there is an edge from node
vj to node vi in the graph G. We denote the state of agent i at time
t as xi(t) ∈ R, and consider the following dynamics for agent i

ẋi = fi

⎛⎝ n∑
j=1

aijgij(xj − xi)

⎞⎠ =: hi(x), (6)

where fi and gij are functions, aij are the elements of the adjacency
matrix A.

Each function fi describes how agent i handles incoming infor-
mation, while gij are concerned with the flow of information along
the edges of the graph G. All these functions are nonlinear andmay
have discontinuities, butwewill use the concept of sign-preserving
functions.

Definition 1. We say that a function ϕ : R → R is sign preserving
if ϕ(0) = 0 and for each y ∈ R \ {0} we have both yϕ(y) > 0 and
min yF[ϕ](y) > 0.
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