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a b s t r a c t

This paper deals with the impulsive stabilization problem for a class of linear singular systems with
time-delays. The stabilization is achieved by only exerting impulsive action on the slow state variables.
Two novel Lyapunov methods are presented to determine exponential stability of the impulsively
controlled systems. For the casewhere the time-delay is unknown andmay be time-varying, a Lyapunov–
Razumikhin method is developed, in which the Razumikhin condition is constructed by exploiting the
relation among the fast state variables, the slow state variables, and their initial values. For the case
where the delay derivative is strictly less than 1, a descriptor type of impulse-time-dependent Lyapunov
functional is introduced, which is discontinuous at impulse times but does not grow along the state
trajectories by construction. By using a convex technique, the stability criteria are expressed in terms
of linear matrix inequalities (LMIs). Then, the impulsive controllers can be designed in the framework
of LMIs. The effectiveness and advantages of the proposed methods are confirmed through simulation
results.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

During the last decades, singular systems have been widely
investigated due to their important applications in many fields
such as economic systems, power systems, electrical networks,
mechanical systems, chemical engineering systems, etc. Singu-
lar systems are also called descriptor systems, implicit systems,
generalized state-space systems, or differential–algebraic systems,
according to the area of applications. The advantage of singular
systems is that they are capable to preserve the structure of physi-
cal systems and to describe both dynamic and static constraints. A
variety of works on stability analysis and synthesis of singular sys-
tems have been reported in the literature (see (Chadli & Darouach,
2014; Dai, 1989; Liberzon & Trenn, 2012; Masubuchi, Kamitane,
Ohara, & Suda, 1997; Mironchenko, Wirth, &Wulff, 2015; Wu, Shi,
& Gao, 2010; Wu, Su, & Shi, 2012; Wu & Zheng, 2009; Zhou, Ho, &
Zhai, 2013), and the references therein). In practical applications,
time delays are frequently encountered, which typically arise due
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to information transmission among different parts of the system.
As pointed out in Fridman (2002), small delay in the feedback
may destabilize the trivial solution of singular systems. For this
reason, analysis and control design for time-delay singular systems
have become an important topic in control theory. In recent years,
interesting results on stability and control problems have been de-
veloped for linear time-delay singular systems in the linear matrix
inequalities (LMIs) framework (Du, Yue, & Hu, 2014; Fridman &
Shaked, 2002;Wu, Su, & Chu, 2010; Xu, Van Dooren, Stefan, & Lam,
2002; Zhu, Zhang, Cheng, & Feng, 2007).

On the other hand, considerable attention has been paid to im-
pulsive control of linear and nonlinear systems. Generally speak-
ing, impulsive control is to externally exert control action on the
state trajectories at some discrete instants, according to given
specifications. This presents an important advantage as it provides
an effective way to deal with the systems which cannot endure
continuous inputs. So impulsive control has been commonly ap-
plied to various fields such as mechanical systems, communica-
tion security systems, orbit control, etc. Several efficient methods
have been developed for stability analysis of the impulsively con-
trolled (regular) systems with/without delays: the Razumikhin-
type Lyapunov function method (Chen & Zheng, 2009, 2011;
Liu & Ballinger, 2001), the impulsive delay differential inequality
method (Li & Song, 2017; Yang & Xu, 2007), the looped-functional
method (Briat & Seuret, 2012a,b), the impulse-time-dependent
Lyapunov function/functional method (Chen, Li, & Lu, 2013), and
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the polytopic embedding method (Hetel, Daafouz, Tarbouriech, &
Prieur, 2013). Despite an increased interest in impulsive control
problems, there are only a few results available for impulsive stabi-
lization of singular systems. In Shi, Zhang, Yuan, and Liu (2011), an
impulsive feedback element was introduced in the hybrid control
law to eliminate the state jumps for switched singular systems. An
impulsive control strategywas proposed in Feng and Cao (2015) to
stabilize a class of nonlinear switched singular systems. However,
these works do not consider the effects of time delays.

Different from the undelayed singular systems, the fast state
variables of time-delay singular systems are governed by a contin-
uous difference equation. Since the dynamical behavior of continu-
ous difference equations cannot be controlled by discrete impulses,
the pure impulsive control method is suitable only to the time-
delay singular systems in which the continuous difference system
have some sort of stability property. When exerting the impulsive
control on the fast state variables, the resulting controlled system
is an interconnection of an impulsive time-delay system and a con-
tinuous difference system. A major difficulty for stability analysis
of the impulsively controlled time-delay singular systems lies in
the fact that the dynamical behavior of the fast state variables is
characterized by continuous difference equations rather than dif-
ferential equations. When there is no impulsive effect, one way to
overcome such difficulty is to employ a descriptor-type Lyapunov–
Krasovskii functional for estimating the slow state variables. Then
Barbalat’s lemma is used to deduce asymptotic convergence of the
fast state variables (Fridman & Shaked, 2002; Xu et al., 2002). Be-
cause this method requires the delay derivatives not to be big, it is
not applicable to singular systems with fast-varying delays (with-
out any constraint on the delay derivative). A widely used method
for stability analysis of regular systems with fast-varying delays is
to apply the Razumikhin technique for treating the delayed terms.
The key to the Razumikhin technique is to ensure that the delayed
terms are dominated by the undelayed terms. It is worth men-
tioning that the descriptor-type Lyapunov functions do not include
the information of the fast state variables. So when applying the
Razumikhin technique to time-delay singular systems, the delayed
terms of fast state variables cannot be dominated by the undelayed
terms via the descriptor-type Lyapunov functions. This means that
the standardRazumikhin technique is no longerworkable for time-
delay singular systems with fast-varying delays. Therefore, the
impulsive stabilization problem for time-delay singular systems is
not trivial, and still remains a technically challenging issue.

Given the above analysis, the focal point of this paper is on
developing novel Lyapunov methods to establish impulsive sta-
bilization conditions of linear time-delay singular systems. In the
case of unknown and time-varying time-delay, by building up
the relation between the fast state variables and the slow state
variables through a continuous difference inequality, a Lyapunov–
Razumikhin method is proposed to analyze the stability of the
impulsively controlled singular systems. In the case of the delay
derivative being strictly less than one, a descriptor-type impulse-
time-dependent Lyapunov functional based method is developed
to derive a new condition for impulsive stabilization. The novelty
of the proposed methods is their ability to capture the hybrid
structure characteristics of the impulsively controlled singular sys-
tems. In relation to impulsive stabilization, design of state feedback
impulsive controllers is also studied. The impulsive gain matrices
can be obtained by solving a set of LMIs.

The rest of the paper is organized as follows. In the next sec-
tion, the model of impulsively controlled time-delay singular sys-
tems and some preliminaries are presented. In Section 2, stability
criteria for the considered systems are developed by using the
Razumikhin–Lyapunov function and Lyapunov functional meth-
ods. Section 4 is devoted to the design of state-feedback impulsive
controllers. In Section 5, two numerical examples are given to
demonstrate the efficiency of the proposedmethods. Finally, some
concluding remarks are made in Section 6.

2. System description and preliminaries

In the sequel, if not explicitly, matrices are assumed to have
compatible dimensions. The notation M > (≥, <,≤) 0 is used to
denote a symmetric positive-definite (positive-semidefinite, nega-
tive, negative-semidefinite) matrix. I stands for an identity matrix
of suitable dimension. ∥ · ∥ refers to the Euclidean vector norm. N
represents the set of positive integers. For τ > 0, let C([−τ , 0],Rn)
denote the space of bounded, continuous functions x : [−τ , 0] ↦→

Rn with norm ∥x∥τ = max−τ≤θ≤0∥x(t + θ )∥. If y ∈ C([−τ , α],Rn)
with α > 0 and t ∈ [0, α), then yt ∈ C([−τ , 0],Rn) is defined by
yt (θ ) = y(t + θ ), θ ∈ [−τ , 0].

Consider an impulsively controlled linear time-delay singular
system with the form of

Eẋ(t) = A0x(t) + A1x(t − τ (t))

+ EB
∞∑
k=1

u(t)δ(t − tk), t > 0,

x(t) = φ(t) = col(φ1(t), φ2(t)), − τ̄ ≤ t ≤ 0,

(1)

where x(t) = col(x1(t), x2(t)) ∈ Rn is the state, in which xi(t) ∈

Rni , i = 1, 2, and n1 + n2 = n; u(t) ∈ Rm is the impulsive
control input. The singular matrix E and the matrices A0, A1, B are
constant matrices with appropriate dimensions. The sequence of
{tk} denotes the impulse instants satisfying 0 = t0 < t1 < t2 <

· · · < tk < · · · and limk→∞tk = ∞. The time-varying function
τ (t) is the state delay satisfying τ0 ≤ τ (t) ≤ τ̄ , where τ0 and
τ̄ are positive scalars, and φi ∈ C([−τ̄ , 0];Rni ), i = 1, 2, are
the initial functions. Without loss of generality, assume that the
singular matrix E takes the form of E = diag

(
In1 , 0n2

)
, and the

matrices in (1) have the following structure:

Ai =

[
Ai1 Ai2
Ai3 Ai4

]
, i = 0, 1, B =

[
B1
B2

]
.

Moreover, we adopt the following assumption.
Assumption (A1): A04 is nonsingular.
This paper is concerned with designing a linear reduced-order

state-feedback impulsive controller

u(tk) = [K 0]x(t−k ), k ∈ N, (2)

where K ∈ Rm×n1 , and x(t−) = limh→0+x(t − h). The connection of
system (1) and controller (2) gives

Eẋ(t) = A0x(t)+A1x(t − τ (t)), t ̸= tk,
∆x1(t) = B1Kx1(t−), t = tk, k ∈ N,

x(t) = φ(t), − τ̄ ≤ t ≤ 0,
(3)

where ∆x1(t) = x1(t+) − x1(t−) with x1(t+) = limh→0+x1(t + h).
Throughout the paper, we assume that x(t) = x(t+), i.e., the
solutions of (3) are right continuous. Define the compatible initial
function space CE = {φ ∈ PC[−τ̄ , 0] : A03φ1(0) + A04φ2(0) +

A13φ1(−τ (0)) + A14φ2(−τ (0)) = 0}. Set

Ā0 = −A−1
04 A03, Ā1 = −A−1

04 A13, Ā2 = −A−1
04 A14.

Lemma 1. Consider system (3) satisfying assumption (A1). Then for
any φ ∈ CE , the solution to (3) exists and is unique on R+.

Proof. For t ∈ [0, τ0], Eq. (3) is equivalent to

ẋ1(t) =

2∑
i=1

A0ixi(t) +

2∑
i=1

A1iφi(t − τ (t)), t ̸= tk,

0 =

4∑
i=3

A0ixi−2(t) +

4∑
i=3

A1iφi−2(t − τ (t)),

x1(t) = (I + B1K )x1(t−), t = tk.

. (4)
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