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a b s t r a c t

In this paper, we revisit the consensus-based projected subgradient algorithm proposed for a common
set constraint. We show that the commonly adopted non-summable and square-summable diminishing
step sizes of subgradients can be relaxed to be only non-summable, if the constrained optimum set is
bounded. More importantly, for a strongly convex aggregate cost with different types of step sizes, we
provide a systematical analysis to derive the asymptotic upper bound of convergence rates in terms of
the optimum residual, and select the best step sizes accordingly. Our result shows that a convergence
rate of O(1/

√
k) can be achieved with a step size O(1/k).

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Distributed convex optimization over multi-agent networks
has been receiving more and more research interest in the recent
decade. One interesting and important case is that each agent has
its own convex cost and decision variable, and needs to minimize
the aggregate cost with an agreed decision variable, as in big
data analysis (Cevher, Becker, & Schmidt, 2014) and distributed
learning (Sayed, 2014). A variety of distributed optimization al-
gorithms have been proposed, e.g. Chen and Ozdaglar (2012);
Duchi, Agarwal, and Wainwright (2012); Iutzeler, Bianchi, Ciblat,
and Hachem (2016); Nedić and Ozdaglar (2009); Nedić, Ozdaglar,
and Parrilo (2010); Varagnolo, Zanella, Cenedese, Pillonetto, and
Schenato (2016); Zhu and Martinez (2012), to name a few.

It is noted that many algorithms are (sub)gradients-based due
to the inexpensive computation cost of (sub)gradients. Earlyworks
combined a weighted averaging of local decision variables with lo-
cal (sub)gradient descent, and the convergence analysis explicitly
relies on an asymptotic agreement of the decision variables. The
distributed subgradient algorithm was firstly proposed in Nedić
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and Ozdaglar (2009), and later extended to the projected subgradi-
ent algorithm (Nedić et al., 2010) for a common set constraint. The
case of nonidentical set constraints was studied in Lin, Ren, and
Farrell (2016). By using push-sum techniques or surplus states, the
above two algorithms can be further applied in directed networks
with row stochastic weight matrices (Nedić & Olshevsky, 2015; Xi
& Khan, 2016b). Distributed dual averaging methods were studied
in Duchi et al. (2012) and Tsianos, Lawlor, and Rabbat (2012).
By employing a Nestorov-type acceleration step, the fast gradient
method and its proximal-gradient version are respectively studied
in Jakovetic, Xavier, and Moura (2014) and Chen and Ozdaglar
(2012) for multi-agent systems. In the above works, an exact con-
vergence to the optimum requires either diminishing step sizes
of (sub)gradients (Lin et al., 2016; Nedić & Olshevsky, 2015;
Nedić et al., 2010; Xi & Khan, 2016b), or a drastically increasing
communication burden of multi-step averaging during each iter-
ation (Chen & Ozdaglar, 2012; Jakovetic et al., 2014). Both cases
lead to a compromised convergence rate when compared with the
corresponding centralized algorithms for differentiable functions.
This issue has been addressed in recent works by including an
additional averaging of local gradients, where a constant step size
of gradients can be adopted to achieve a similar convergence rate
as centralized algorithms (Nedić, Olshevsky, & Shi, 2016; Nedić,
Olshevsky, Shi, & Uribe, 2016; Qu & Li, 2016; Shi, Ling, Wu, & Yin,
2015; Xi & Khan, 2016a, 2017; Xu, Zhu, Soh, & Xie, 2015).

Convergence rate is an important criterion for evaluating the
performance of different optimization algorithms. Distributed sub-
gradient methods can achieve a convergence rate of O(log k/

√
k)

for general convex costs (Nedić & Olshevsky, 2015; Xi & Khan,
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2016b), and O(log k/k) for strongly convex functions (Nedić &
Olshevsky, 2016). Distributed averaging methods achieve a con-
vergence rate of O(1/

√
k) for general convex costs (Duchi et al.,

2012; Tsianos et al., 2012). Note that these results are given as the
ergodic rate in terms of the optimum value residual.When the cost
function assumes Lipschitz continuous gradients, a sublinear rate
of O(1/k) can be achieved by adopting a constant step size (Qu &
Li, 2016; Shi et al., 2015), and the fast distributed gradient method
achieves a rate of O(1/k2−ε) with an arbitrarily small ε (Jakovetic
et al., 2014). If the cost function further assumes strong convexity,
then a linear rate can be achieved (Nedić, Olshevsky, & Shi, 2016;
Nedić, Olshevsky, Shi, & Uribe, 2016; Qu & Li, 2016; Shi et al., 2015;
Xi & Khan, 2016a, 2017). Note that the rate analysis in aboveworks
is carried out for particular step sizes.

In this paper, we revisit the projected subgradient algorithm
proposed in Nedić et al. (2010) under a common set constraint.We
relax the non-summable and square-summable conditions of the
diminishing step sizes of subgradients to non-summable when the
constrained optimum set is bounded. Moreover, under the strong
convexity condition we provide a systematic convergence rate
analysis for different types of diminishing step sizes, and select the
best step size accordingly. One specific choice of the best step size
is given by α(k) = c/kwhere c is lower bounded by some constant,
and the corresponding convergence rate is O(1/

√
k) in terms of

optimum residual. When comparedwith the existing works which
address non-smooth costs by subgradientmethods, it outperforms
the ergodic rate of O(log k/

√
k) in Nedić and Olshevsky (2015)

and Xi and Khan (2016b) with the additional strong convexity
condition; besides, it also provides a sharper upper bound than the
result in Nedić and Olshevsky (2016) where the convergence rate
of optimum residual is given by O(

√
log k
k ).

The rest of the paper is organized as follows. Some prelimi-
naries on graph theory and convex analysis are briefly reviewed
in Section 2, and the problem formulation is introduced in Section 3
together with some necessary assumptions. The convergence un-
der a relaxed condition of diminishing step sizes is proved in
Section 4, followed by the corresponding rate analysis in Section 5.
We conclude our work in Section 7.

Throughout this paper, the following notations are used. R,
Rn and Rm×n represent the set of real numbers, the set of n-
dimensional real column vectors and the set ofm×n real matrices,
respectively. Z+ stands for the set of positive integers. Given a
matrix M , we use [M]ij to denote its (i, j)-th entry and M ′ its
transpose. col{x1, . . . , xn} is a column vector with the ith block
equal to xi. 1n is an n-dimensional column vector with all elements
being 1 and J =

1
n1n1′

n. For x, y ∈ Rm, ⟨x, y⟩ and ∥x − y∥ are
their inner product and the induced distance, i.e. ⟨x, y⟩ = x′y, ∥x−

y∥ =
√

⟨x − y, x − y⟩. ΨM (·, ·) denotes the matrix multiplication
deductively defined as ΨM (i, j) = M(j)ΨM (i, j − 1), ∀i ≤ j and
ΨM (i, j) = I , if i > j. Given two functions α1(k), α2(k) : Z+

→ R,
α1(k) = O(α2(k)) if lim supk→+∞

⏐⏐ α1(k)
α2(k)

⏐⏐ < +∞ and α1(k) =

o(α2(k)) if limk→+∞
α1(k)
α2(k)

= 0.

2. Preliminaries

2.1. Graphs and nonnegative matrices

A multi-agent system and the communication among different
agents (nodes) can be modeled as a directed graph G = {N , E}.
N = {1, . . . , n} is the node set, and E = {(i, j) : i, j ∈ N } is
the edge set of ordered pairs, where (i, j) ∈ E implies that node j
can receive information from node i. A nonnegative weight matrix
A = (aij) ∈ Rn×n can be further assigned to a graph G, where aij > 0
iff (j, i) ∈ E and

∑
jaij = 1 for each i. A path from node i to j is

defined by an edge sequence (i, n1), (n1, n2), · · · , (ni, j) ∈ E .G is said

to be strongly connected if a path can always be found between any
two different nodes. G(k) = {N , E(k)} denotes the graph at each
time instant k, and the joint graph over time span [k1, k2] is given
by G[k1, k2] = {N , ∪

k=k2
k=k1

E(k)}. We say that graphs {G(k), k ∈ Z+
}

are uniformly strongly connected, if there exists κ ∈ Z+ such that
G[k, k + κ] is strongly connected for each k.

2.2. Convex analysis

2.2.1. Convex sets
A set C ⊆ Rm is convex if θx+ (1− θ )y ∈ C for any x, y ∈ C and

θ ∈ (0, 1). For a closed convex set C, PC(·) : Rm
→ C is a projection

operator which maps x ∈ Rm to a unique point PC(x) such that
∥x − PC(x)∥ = infv∈C∥x − v∥ ≜ ∥x∥C . PC is non-expansive in the
sense that

∥PC(x) − PC(y)∥ ≤ ∥x − y∥, ∀x, y ∈ Rm. (1)

Moreover, for any y ∈ C, it holds that (Nedić & Ozdaglar, 2009)

∥PC(x) − y∥2
≤ ∥x − y∥2

− ∥x∥2
C. (2)

2.2.2. Convex functions
A real function f defined on Rm is convex if for any x, y ∈ Rm

and θ ∈ (0, 1), it holds that f (θx+ (1− θ )y) ≤ θ f (x)+ (1− θ )f (y).
The subdifferential of a convex function f at x is defined by the set

∂ f (x) = {gf (x) : f (y) ≥ f (x) + ⟨gf (x), y − x⟩, ∀y}, (3)

and gf (x) ∈ ∂ f (x) is called a subgradient of f at x.
Given a convex set C, a convex function f is β-strongly convex

over C if there exists β > 0 such that ∀x, y ∈ C, θ ∈ (0, 1),

f (θx + (1 − θ )y) ≤ θ f (x) + (1 − θ )f (y) −
β

2
θ (1 − θ )∥x − y∥2. (4)

Furthermore, if f attains the minimum over C at x∗
∈ C, then f

can be lower bounded by a quadratic function as follows (Hiriart-
Urruty & Lemaréchal, 2001):

f (y) − f (x∗) ≥
β

2
∥y − x∗

∥
2, ∀y ∈ X . (5)

3. Problem formulation

Consider the following constrained optimization problem of
minimizing a sum of convex cost functions as

min
x∈X

F (x) ≜
n∑

i=1

fi(x), (6)

where each fi is the individual cost of agent i, and X ⊆ Rm is a
closed and convex constraint set. Denote the state of agent i as xi,
then (6) is equivalent to

min
xi∈X

n∑
i=1

fi(xi), s.t. x1 = · · · = xn. (6)’

More precisely, if we denote

X ∗
= argmin

x∈X
F (x), (7)

then (7) is solved in terms of following conditions:

lim
k→∞

∥xi(k) − xj(k)∥ = 0, ∀i, j ∈ N , (8a)

lim
k→∞

∥xi(k)∥X∗ = 0, ∀i ∈ N . (8b)
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