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a b s t r a c t

A nonlinear system possesses an invariancewith respect to a set of transformations if its output dynamics
remain invariant when transforming the input, and adjusting the initial condition accordingly. Most
research has focused on invariances with respect to time-independent pointwise transformations like
translational-invariance (u(t) → u(t) + p, p ∈ R) or scale-invariance (u(t) → pu(t), p ∈ R>0). In
this article, we introduce the concept of s0-invariances with respect to continuous input transformations
exponentially growing/decaying over time.We show that s0-invariant systems not only encompass linear
time-invariant (LTI) systemswith transfer functions having an irreducible zero at s0 ∈ R, but also that the
input/output relationship of nonlinear s0-invariant systems possesses properties well known from their
linear counterparts. Furthermore,we extend the concept of s0-invariances to second- and higher-order s0-
invariances, corresponding to invariances with respect to transformations of the time-derivatives of the
input, and encompassing LTI systems with zeros of multiplicity two or higher. Finally, we show that nth-
order 0-invariant systems realize – under mild conditions – nth-order nonlinear differential operators:
when excited by an input of a characteristic functional form, the system’s output converges to a constant
value only depending on the nth (nonlinear) derivative of the input.

© 2017 The Authors. Published by Elsevier Ltd.
This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Systems invariantwith respect to a set of pointwise input trans-
formations (see e.g. Adler, Mayo, & Alon, 2014; Goentoro, Shoval,
Kirschner, & Alon, 2009; Hironaka &Morishita, 2014; Shoval, Alon,
& Sontag, 2011; Shoval et al., 2010) show the same output dy-
namics when applying a transformation to the systems’ input, and
adjusting the initial conditions appropriately (see Section 3 for pre-
cise definitions). For example, linear time-invariant (LTI) systems
with a zero at the origin are translational invariant, that is, invari-
ant with respect to translations u(t) → u(t) + p of the input, with
p ∈ R. Similarly, scale-invariance (also referred to as fold-change
detection Shoval et al., 2010) is defined with respect to geometric
scaling u(t) → pu(t) of the input, with p ∈ R>0. In the context
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of invariant systems, the major result in Shoval et al. (2011) is of
specific importance, showing that nonlinear systems are invariant
with respect to a certain set of input transformations if and only
if they are equivariant with respect to the same transformations
(see Section 3 for details). Different to invariance, equivariance is a
‘‘memoryless’’ structural property only depending on the current
state and input of the system; that a given system is equivariant is,
thus, typically easier to prove.

Recently, we have shown that – under mild conditions
– invariant systems realize first-order nonlinear differential
operators (Lang & Sontag, 2016). That is, there exists a set of
characteristic inputs for which the output of an equivariant
system remains constant (in general nonzero) when initialized
appropriately. Importantly, the constant value of the output only
depends on the (nonlinear) derivative of the characteristic input,
with the functional formof the derivative defined by the invariance
itself. For example, translational invariant systems can realize the
differential operator d

dt (i.e., ȳ
∗

= α( d
dt u(t)), with u a characteristic

input, ȳ∗ the constant output, and α some nonlinear map) in
agreement with the known property that the output of Hurwitz
LTI systems with a zero at the origin excited by ramps converge to
constant values proportional to the slope of the ramp. Similarly,
scale-invariant systems can realize the nonlinear differential
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operator d
dt log (i.e., ȳ∗

= α
 d
dt log(u(t))


), with the characteristic

inputs given by exponential functions (Lang & Sontag, 2016).
In this article, we introduce two mutually compatible gener-

alizations of invariance: (i) for any given s0 ∈ R, s0-invariant
systems are invariant with respect to continuous input transfor-
mations exponentially growing/decaying over time, and comprise
LTI systems with a zero at s0; and (ii) second-order s0-invariant
systems are invariant with respect to transformations of the time-
derivative of the input, and comprise LTI systems possessing zeros
with multiplicity two. Additionally, we show how the latter can
be generalized to arbitrary-order invariances. For each of the two
generalizations of invariance, we derive the corresponding gener-
alized equivariances, that is, provide a possibility to structurally
test if a given system possesses a generalized invariance without
having to consider state trajectories or past inputs. Finally, based
on the definition of a characteristic model of an s0-invariant sys-
tem – a concept related to pole-zero cancellation of LTI systems
– we extend our previous results on systems realizing differen-
tial operators (Lang & Sontag, 2016) by showing that higher-order
0-invariant systems can realize higher-order differential operators.

The rest of this article is organized as follows. In Section 2, we
briefly recapitulate dynamic properties of LTI systems with zeros
of arbitrary multiplicity. In Section 3, we provide our definitions
of first-order s0-invariance and s0-equivariance, and prove their
equivalence under mild assumptions. In Section 6, we introduce
the notion of second-order s0-equivariance and invariance. Finally,
based on the characteristic model of an s0-invariant system
(Section 4), we define in Sections 5 and 7 systems realizing first-
and higher-order differential operators, and establish their close
relationship to 0-invariant systems.

2. Zeros of linear time-invariant systems

Consider a single-input, single-output LTI system given by the
ordinary differential equations (ODEs)

d
dt

z(t) = Az(t) + bu(t), z(0) = z̄ (1a)

y(t) = cT z(t). (1b)

with state z(t) ∈ Rn, piecewise-continuous input u(t) ∈ R, output
y(t) ∈ R, system matrix A ∈ Rn×n, and input and output vectors
b, c ∈ Rn×1.

An LTI system (1) has a zero at s0 ∈ C if det(M(s0)) = 0, with
M(s) =

 A − sI b
−cT 0


(see e.g. Brockett, 1965). In the following, we

assume that the system (1) is controllable and observable. Since,
in this article, we are only interested in real zeros, we furthermore
assume s0 ∈ R. Then, a necessary and sufficient condition for the
system to have a zero at s0 is that the transfer function G(s) =

−cT (A − sI)−1b evaluates to zero at s = s0. The nullspace ofM(s0)
is spanned by the vector (z̄1s0 , 1)

T , with z̄1s0 = −(A − s0I)−1b. This
implies that


pu1

s0 , pz̄
1
s0


, with u1

s0(t) = es0t and p ∈ R, zeros the
output (see e.g. Isidori, 1995, p. 162ff), that is,when (1) is initialized
at pz̄1s0 and excited by pu1

s0 , the output remains zero.
More generally, if the system possesses a zero s0 ∈ R with

multiplicityms0 ≥ 1, i.e. if cT (A− sI)−lb = 0 for all l = 1, . . . ,ms0 ,
the corresponding inputs and initial conditions zeroing the output
are given by (multiples of) ul

s0(t) = t l−1es0t and z̄ ls0 = −(l −

1)!(A−s0I)−lb. Due to the superposition principle of linear systems,
for an LTI system with ns distinct zeros si0, i = 1, . . . , ns, with
multiplicities msi0

, the set S0 = {(ul
si0
, z̄ l

si0
)}l=1,...,m

si0
,i=1,...,ns spans

a vector space of inputs and initial conditions zeroing the output.
The superposition principle has another important conse-

quence: Consider an LTI system initialized at any state z̄ ∈ Rn and
excited by any input u ∈ U, and let (u0, z̄0) ∈ span(S0). Then,

the output of the system is invariant with respect to the mapping
(u, z̄) → (u+u0, z̄+z̄0), that is, cT ξ(t, z̄, u) = cT ξ(t, z̄+z̄0, u+u0),
with ξ(t, z̄, u) = z(t) the solution of (1) for the initial condition z̄
and the input u. We can reformulate this property as follows: First,
let πp : R → R, πp(ū) = ū+ p, describe a set of input transforma-
tions for p ∈ R. Assume that the LTI system has a zero at s0 with
multiplicity ms0 . Then, for every l = 1, . . . ,msi0

, z̄ ∈ R and p ∈ R,
there exists a z̄ ′

∈ R such that

cT ξ(t, z̄, u) = cT ξ(t, z̄ ′, t → πpt l−1 exp(s0t)(u(t))), (2)

for all u ∈ U and t ≥ 0. Note, that (2) follows from our previous
analysis, with z̄ ′

= z̄ − p(l − 1)!(A − s0I)−lb.
LTI systems with a zero at the origin with multiplicity m0

possess another interesting property: when excited by u(t) =m0
l=0 klt

l, there exists an initial condition z̄∗ such that the
output remains constant, i.e. such that cT ξ(t, z̄∗, u) = ȳ∗

=

−m0!cTA−m0−1bkm0 . Notably, ȳ
∗ only depends on the coefficient

of the monomial of u with degree m0. Thus, we can equivalently
write ȳ∗

= −cTA−m0−1b dm0
dtm0 u(t), i.e. the output of the system

excited by u and initialized at z̄∗ is proportional to the m0th time
derivative of the input. If, additionally, the system is Hurwitz, the
output converges to ȳ∗ for any initial condition.

3. First-order s0-invariance and s0-equivariance

Throughout the rest of this article, we consider nonlinear
systems given by ODEs of the form

d
dt

z(t) = f (z(t), u(t)), z(0) = z̄ (3a)

y(t) = h(z(t)). (3b)

The vector z(t) ∈ Z ⊆ Rn represents the state of the system at
time t ∈ R≥0, and u ∈ U ⊆ PC(R≥0,U) a piecewise-continuous
(external) input, with u : R≥0 → U ⊆ R. The dynamics are
given by the vector field f : Z × U → Rn, the initial conditions
by z̄ ∈ Z , and the output by y(t) ∈ R, with h : Z → R. We
assume that f and h are analytic, and that for each initial condition
z̄ ∈ Z and each input u ∈ U there exists a unique, piecewise
differentiable and continuous solution of Eq. (3), which we denote
by ξ : R≥0 × Z × U → Z , ξ(t, z̄, u) = z(t).

In the previous section, we have shown that the output of an
LTI system is invariant with respect to the input transformations
πp : U → U , p ∈ R, corresponding to translations of the input (2).
In the following, we define an equivalent property for nonlinear
systems – referred to as s0-invariance – with respect to input
transformations not necessarily corresponding to translations.
Different to previous work (Shoval et al., 2011), we restrict
ourselves to input transformations forming a one-parameter Lie
group under function composition ◦ as defined in Bluman and
Kumei (1989). This implies that we can parametrize the input
transformations P = {πp : U → U}p by a parameter p ∈ P ⊆

R such that πp is differentiable in U and analytic in P (Bluman
& Kumei, 1989, p. 34). Furthermore, by the first fundamental
theorem of Lie (Bluman & Kumei, 1989, p. 37), πp can always be
parametrized such that P = R, such that the law of composition
becomes additive (πp1 ◦ πp2 = πp1+p2 ), and such that p = 0
corresponds to the identity transformation (π0(ū) = ū for all
ū ∈ U). In the following, we assume that every Lie group is
parametrized as described above.

Definition 1 (First-order s0-invariance). Consider the system (3)
and a one-parameter Lie group of input transformations P =

{πp : U → U}p∈R. Then, the system is first-order s0-invariant with
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