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a b s t r a c t

This paper addresses distributed average tracking for a group of physical double-integrator agents under
anundirected graphwith reduced requirement on velocitymeasurements. The idea is thatmultiple agents
track the average of multiple time-varying input signals, each of which is available to only one agent,
under local interaction with neighbors. We consider two cases. First, a distributed algorithm and filter are
proposed, where each agent needs its own and neighbors’ filter outputs obtained through communication
besides its local relative positions and its input signal, input velocity and input acceleration. Here, the
requirement for either absolute or relative velocity measurements is removed. The algorithm is robust
to initialization errors and can deal with a wide class of input signals with bounded deviations in input
signals, input velocities, and input accelerations. Second, a distributed algorithm and filter are proposed
to remove the requirement for communication. Here, each agent needs to measure the relative positions
between itself and its neighbors and its own velocity. However, the requirement for relative velocity
measurements between the agent and its neighbors is removed. The algorithm is robust to initialization
errors and can deal with the case, where the input signals, input velocities and input accelerations are all
bounded.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

This paper studies the following distributed average tracking
problem: given a group of agents and one time-varying input signal
per each agent, design a control law for the agents based on local
information such that all the agents will finally track the average
of these input signals. The problem has found applications in
distributed sensor fusion (Spanos, Olfati-Saber, & Murray, 2005a),
feature-based mapmerging (Aragues, Cortes, & Sagues, 2012), and
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distributed Kalman filtering (Bai, Freeman, & Lynch, 2011), where
the scheme has been mainly used as an estimator. However, there
are some applications such as region following formation control
(Cheah, Hou, & Slotine, 2009), coordinated path planning (Švestka
& Overmars, 1998) or distributed convex optimization (Rahili, Ren,
& Lin, 2017) that require the agents’ physical states instead of
estimator states to converge to a time-varying network quantity,
where each agent only has a local and incomplete copy of that
quantity. Compared with the consensus and distributed tracking
problems, distributed average tracking poses more theoretical
challenges, since the tracking objective is time-varying and is not
available to any agent.

In the literature, linear distributed algorithms have been em-
ployed for special kinds of time-varying input signals. Ref. Spanos,
Olfati-Saber, and Murray (2005b) uses frequency domain analysis
to study consensus on the average of multiple input signals with
steady-state values. In Freeman, Yang, and Lynch (2006), a pro-
portional algorithm and a proportional–integral algorithm are pro-
posed to achieve the distributed average tracking with bounded
tracking error, where accurate estimator initialization is relaxed
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in the proportional–integral algorithm. In Bai, Freeman, and Lynch
(2010), the internalmodel principle is employed to extend the pro-
portional–integral algorithm to a special group of time-varying in-
put signals with a common denominator in their Laplace trans-
forms, where the denominator also needs to be used in the es-
timator design. In Kia, Cortes, and Martinez (2013), the authors
propose 1st-order-input and 2nd-order-input consensus algo-
rithms to allow the agents to track the average of their dynamic
input signals with a pre-specified rate, where the interaction is
described by a strongly connected and weight-balanced directed
graph. Ref. Zhu and Martinez (2010) addresses discrete-time dis-
tributed average tracking of time-varying input signals whose nth
order difference is bounded with a bounded error. However, linear
algorithms cannot ensure distributed average tracking for general
input signals. Therefore, some researchers employ nonlinear track-
ing algorithms. In Nosrati, Shafiee, and Menhaj (2012), a class of
nonlinear algorithms is proposed for input signals with bounded
deviations, where the tracking error is proved to be bounded. A
nonsmooth algorithm is proposed in Chen, Cao, and Ren (2012),
which is able to track time-varying input signals with bounded
derivatives.

All the above references primarily study the distributed average
tracking problem from a distributed estimation perspective, where
the agents implement local estimators through communication
withneighbors freelywithout theneed for obeying certain physical
agent dynamics. However, there are applications (Cheah et al.,
2009; Rahili et al., 2017; Švestka & Overmars, 1998), where the
distributed average tracking problem is relevant for designing
distributed control laws for physical agents. In these applications,
the dynamics of the physical agents must be taken into account
in the control law design and the dynamics themselves introduce
further challenges to the distributed average tracking problem.
Distributed average tracking for physical agents with double-
integrator dynamics and general linear dynamics are studied in,
respectively, Chen and Ren (2013), Chen, Ren, Lan, and Chen (2015)
and Zhao, Duan, and Li (2017). In Chen, Feng, Liu, and Ren (2015)
a proportional–integral control scheme is extended to achieve
distributed average tracking for physical Euler–Lagrange systems
for two different kinds of input signals with steady states and with
bounded derivatives.

It is noted that in the existing distributed average tracking
algorithms employed for applications with physical double-
integrator agents, both relative position and relative velocity
measurements are required in the control laws (Chen, Feng et al.,
2015; Chen & Ren, 2013; Chen, Ren et al., 2015; Rahili et al., 2017;
Zhao et al., 2017). However, in practice, velocity measurements
are usually less accurate and more expensive than position
measurements. In addition, relative velocity measurements are
often more challenging and expensive than absolute velocity
measurements. We are hence motivated to solve the distributed
average tracking problem for physical double-integrator agents
with reduced requirement on velocity measurements, expanding
on our preliminary work reported in Ghapani, Ren, and Chen
(2015). In the context of distributed average tracking, reducing
velocity measurements poses significant theoretical challenges.
The reason is that unlike the consensus problem or the single-
leader coordinated tracking problem where the leader has access
to the tracking objective, there are significant additional inherent
challenges in distributed average tracking as none of the agents has
access to the tracking objective.

In this paper, two distributed algorithms (controller design
combined with filter design) are introduced to achieve distributed
average tracking with reduced requirement on velocity measure-
ments and in the absence of correct position and velocity initializa-
tion. Each algorithm has its own relative benefits and is feasible for
different application scenarios. In the first algorithm design, there

is no need for either absolute or relative velocity measurements.
Each agent’s algorithm employs its local relative positions with re-
spect to neighbors, its own and neighbors’ filter outputs accessed
through communication and its own input signal, input velocity
and input acceleration. The algorithmallows the agents to track the
average of a wide class of time-varying input signals with bounded
deviations among the input signals, among the input velocities, and
among the input accelerations. Using this algorithm, distributed
average tracking can be achieved in the absence of velocity mea-
surements and correct initialization. In the second algorithm de-
sign, there is still no requirement for correct initialization and
relative velocitymeasurements. Furthermore, inter-agent commu-
nication is not necessary and the algorithm can be implemented
using only local sensing, which is desirable for certain applications
(e.g., deep-space spacecraft formation flying), where communica-
tion might not be desirable or available. Each agent’s algorithm
only employs its local relative positions with respect to neighbors,
its own velocity, input signal, input velocity and input acceleration.
Distributed average tracking can be achieved provided that the in-
put signals and their velocities and accelerations are all bounded.
Notations: Throughout the paper, R denotes the set of all real
numbers and R+ the set of all positive real numbers. Let 1n
and 0n denote the n × 1 column vector of all ones and all
zeros respectively. Let λmax(·) and λmin(·) denote, respectively, the
maximum and minimum eigenvalues of a square real matrix with
real eigenvalues. We use ⊗ to denote the Kronecker product, and
sgn(·) to denote the signum function defined componentwise. For
a vector function x(t) : R → Rm, define ∥x(t)∥p as the p-norm,
x(t) ∈ L2 if


∞

0 x(τ )T x(τ )dτ < ∞ and x(t) ∈ L∞ if for each
element of x(t), supt≥0 |xi(t)| < ∞, i = 1, . . . ,m.

2. Problem statement

Here, we consider n physical agents described by double-
integrator dynamics

ẋi(t) = vi(t), v̇i(t) = ui(t), i = 1, . . . , n, (1)

where xi(t) ∈ Rp and vi(t) ∈ Rp are, respectively, ith agent’s
position and velocity, and ui(t) is its control input.

An undirected graph G , (V , E) is used to characterize the
interaction topology among the agents, where V , {1, . . . , n} is
the node set and E ⊆ V×V is the edge set. An edge (j, i) ∈ E means
that node i can obtain information from node j and vice versa. Self
edges (i, i) are not considered here. Ni is the set of agents that are
neighbors of agent i. Letm denote the number of edges in E, where
the edges (j, i) and (i, j) are counted only once. The set of neighbors
of node i is denoted as Ni. The adjacency matrix A = [aij] ∈ Rn×n of
the graph G is defined such that the edge weight aij = 1 if (j, i) ∈ E
and aij = 0 otherwise. For an undirected graph, aij = aji. The
Laplacian matrix L = [lij] ∈ Rn×n associated with A is defined as
lii =


j≠i aij and lij = −aij, where i ≠ j. For an undirected graph,

L is symmetric positive semi-definite. By arbitrarily assigning an
orientation for the edges in G, let D , [dij] ∈ Rn×m be the incidence
matrix associated with G, where dij = −1 if the edge ej leaves node
i, dij = 1 if it enters node i, and dij = 0 otherwise. The Laplacian
matrix L is then given by L = DDT (Royle & Godsil, 2001).

Assumption 2.1. The undirected graph G is connected.

Lemma 2.1 (Royle & Godsil, 2001). Under Assumption 2.1, the
Laplacian matrix L has a simple zero eigenvalue such that 0 =

λ1(L) < λ2(L) ≤ · · · ≤ λn(L), whereλi(·) denotes the ith eigenvalue.
Furthermore, for any vector y ∈ Rn satisfying 1T

ny = 0, λ2(L)yTy ≤

yT Ly ≤ λn(L)yTy.

Suppose that each agent has a time-varying input signal xri (t) ∈

Rp, i = 1, . . . , n, satisfying

ṙi(t) = vri (t), v̇ri (t) = ari (t), (2)



Download English Version:

https://daneshyari.com/en/article/4999787

Download Persian Version:

https://daneshyari.com/article/4999787

Daneshyari.com

https://daneshyari.com/en/article/4999787
https://daneshyari.com/article/4999787
https://daneshyari.com

