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a b s t r a c t

Cone-copositive piecewise quadratic Lyapunov functions (PWQ-LFs) for the stability analysis of
continuous-time piecewise affine (PWA) systems are proposed. The state space is assumed to be
partitioned into a finite number of convex, possibly unbounded, polyhedra. Preliminary conditions on
PWQ functions for their sign in the polyhedra and continuity over the common boundaries are provided.
The sign of each quadratic function is studied by means of cone-constrained matrix inequalities which
are translated into linear matrix inequalities (LMIs) via cone-copositivity. The continuity is guaranteed
by adding equality constraints over the polyhedra intersections. An asymptotic stability result for PWA
systems is then obtained by finding a continuous PWQ-LF through the solution of a set of constrained
LMIs. The effectiveness of the proposed approach is shown by analyzing an opinion dynamics model and
two saturating control systems.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Piecewise affine (PWA) systems are characterized by a set of
state-dependent switching affine subsystems defined over a state
space partitioned into convex polyhedra (Sontag, 1981). There ex-
ist numerous important applications which involve PWA systems.
At least they can be employed to approximate nonlinear systems
and are shown to be equivalent to several classes of hybrid systems
(Heemels, De Schutter, & Bemporad, 2001).

The stability analysis of PWA systems is a difficult issue due to
their hybrid nature. A classical sufficient condition is the quadratic
stability (Boyd, El Ghaoui, Feron, & Balakrishnan, 1994; Eren,
Shenb, & Camlibel, 2014) which is however known to be conserva-
tive. Different approaches have been investigated in the last years
with the aim of obtaining less conservative results. Among oth-
ers, the multiple Lyapunov function approach, i.e., to combine Lya-
punov functions defined over different regions of the state space,
has been proposed, see Lin and Antsaklis (2009). In particular,
piecewise quadratic Lyapunov functions (PWQ-LFs) obtained by
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patching together quadratic forms (for the regions containing the
origin) and quadratic functions (for the regions which do not con-
tain the origin), have been widely investigated starting from the
seminal work (Johansson, 2003). In this framework the stability
conditions are typically formulated in terms of constrained in-
equalities which can be solved by means of a set of linear matrix
inequalities (LMIs) by applying the S-procedure (Lin & Antsaklis,
2009). Unfortunately the S-procedure is lossy in general. Several
variants of this technique have been proposed in the more recent
literature including sliding modes (Samadi & Rodrigues, 2011), at-
traction domain estimation (Li & Lin, 2015), and relaxed LMIs for
discrete-time PWA systems (Hovd & Olaru, 2013).

In Iervolino and Vasca (2014) a PWQ-LF approach suitable
for Lur’e systems with slab partitions is proposed, however the
results therein cannot be directly extended to PWA systems
with more general polyhedral partitions of the state space. In
Iervolino, Vasca, and Iannelli (2015) conewise linear systems were
considered, which excluded the presence of bounded polyhedra
in the state space partition. In this paper we propose a new
PWQ approach for continuous-time PWA systems where the
PWQ-LF, differently from the other approaches, is obtained by
suitably combining quadratic functions for all regions of the
state space partition. The stability conditions are expressed in
terms of cone-constrained inequalities which are translated into
LMIs by formulating a cone-copositive problem. The copositive
programming for a given matrix analyzed in Bundfuss and Dür
(2008) and Sponsel, Bundfuss, and Dür (2012) is here exploited
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with a more challenging perspective. Indeed our problem consists
in finding a set of cone-copositive matrices that define a PWQ-LF
andwhose entries are degrees of freedom for the stability problem.
The approach is shown to be effective for the stability analysis of
opinion dynamics (Yang, Dimarogonas, & Hu, 2014) and saturated
control systems (Eghbal, Pariz, & Karimpour, 2013; Milani, 2004).

The paper is organized as follows. In Section 2 some preliminary
definitions and concepts are recalled. The sign analysis for a
PWQ function is considered in Section 3 and its continuity is
investigated. The stability problem for PWAsystems is presented in
Section 4. The numerical examples illustrated in Section 5 confirm
the effectiveness of the approach. Section 6 concludes the paper.

2. Preliminaries

Let us recall some useful definitions and concepts.

Definition 1. Given a finite number ρ of points {rℓ}
ρ

ℓ=1, rℓ ∈ Rn,
ρ ∈ N, a conical hull C = cone {rℓ}

ρ

ℓ=1 is the set of points v ∈ Rn

such that v =
ρ

ℓ=1 θℓrℓ, with θℓ ∈ R+, R+ being the set of
nonnegative real numbers. The set C is also called (polyhedral)
cone and the points {rℓ}

ρ

ℓ=1 are called rays of the cone. The matrix
R ∈ Rn×ρ whose columns are the points {rℓ}

ρ

ℓ=1 in an arbitrary
order is called ray matrix. Any v ∈ C can be written as v = Rθ
where θ ∈ Rρ

+.

Definition 2. Given a finite number λ of points {vℓ}
λ
ℓ=1, vℓ ∈ Rn,

λ ∈ N, a convex hull, say conv{vℓ}
λ
ℓ=1, is a conical hull withλ

ℓ=1 θℓ = 1.

Definition 3. Given a finite number λ of vertices {vℓ}
λ
ℓ=1 and a

finite number ρ of rays {rℓ}
ρ

ℓ=1, vℓ, rℓ ∈ Rn, λ, ρ ∈ N, the (convex)
set

X = conv{vℓ}
λ
ℓ=1 + cone{rℓ}

ρ

ℓ=1 (1)

is a polyhedron in Rn. The expression (1) identifies the so-called
V-representation of the polyhedron.

In the following we assume that in the polyhedron representation
(1) all possible redundancies of the set of vertices and rays have
been eliminated.

Any non-empty polyhedron can be equivalently represented
by using the H-representation or the V-representation (Avis,
Fukuda, & Picozzi, 2002). Given an H-representation of a poly-
hedron there exist numerical tools for obtaining a corresponding
V-representation, e.g., Fukuda (2016).

Definition 4. Denote by int(X) the interior of a full-dimensional
set X ⊆ Rn and S a finite positive integer. A partition of X is the
family of full-dimensional sets {Xs}

S
s=1 satisfying X = ∪S

s=1 Xs and
int(Xs) ∩ int(Xm) = ∅ for s ≠ m.

In this paper we are interested in polyhedral partitions of X , i.e., to
the case where {Xs}

S
s=1 are polyhedra, such that the intersection of

two polyhedra is either empty or a common face. If such property
does not hold, regions can be subdivided such that the property is
fulfilled. An (n−1)-dimensional face of a polyhedron is called facet.

Given a polyhedron one can define two corresponding cones of
interest. The conical hull of a polyhedron X represented as in (1) is
the cone CX ⊆ Rn defined as

CX = cone{{vℓ}
λ
ℓ=1, {rℓ}

ρ

ℓ=1}. (2)

In the followingwe assume that (2) is aminimal representation for
CX , in the sense that in (2) all possible redundancies of the set of
generators have been eliminated and the numbers λ and ρ rede-
fined accordingly. The matrix R = (v1 · · · vλ r1 · · · rρ),

with R ∈ Rn×(λ+ρ), is the ray matrix of CX . Note that if 0 ∈ int(X)

then CX is equal to Rn. For the analysis of interest in the sequel of
the paper it is assumedwithout loss of generality that if 0 ∈ X then
the origin belongs to the boundary of X .

Another cone related to a polyhedron X ⊂ Rn, denoted by
ĈX ⊂ Rn+1, is obtained bymeans of the homogenization procedure
defined below.

Definition 5. Consider a polyhedron X ⊂ Rn with the represen-
tation (1). For each vertex vℓ ∈ Rn, its vertex-homogenization
v̄ℓ ∈ Rn+1 is defined as v̄ℓ = col(vℓ, 1) ∈ Rn+1, where col(·)
indicates a vector obtained by stacking in a unique column the col-
umn vectors in its argument. For each ray rℓ ∈ Rn its direction-
homogenization r̄ℓ ∈ Rn+1 is defined as r̄ℓ = col(rℓ, 0) ∈ Rn+1.

Given a polyhedron X ⊂ Rn it is possible to define a corresponding
cone ĈX ⊂ Rn+1 by moving X to the hyperplane H =


x̄ ∈

Rn+1
: x̄ = col(x, 1), x ∈ Rn


and drawing all the halflines from

the origin of Rn+1 to any point of X , as stated in the following
proposition.

Proposition 6. Given a polyhedron X ⊂ Rn, consider the points
{v̄ℓ}

λ
ℓ=1 and {r̄ℓ}

ρ

ℓ=1 inRn+1 obtained by applying the homogenization
in Definition 5. Then the cone in Rn+1

ĈX = cone{{v̄ℓ}
λ
ℓ=1, {r̄ℓ}

ρ

ℓ=1} (3)

is such that ĈX ∩ H = X̄ where H is the hyperplane defined above
and X̄ =


x̄ ∈ Rn+1

: x̄ = col(x, 1), x ∈ X

.

For any cone ĈX ⊂ Rn+1 defined by Proposition 6, one can obtain
a corresponding ray matrix R̂ ∈ R(n+1)×(λ+ρ) which has the form

R̂ =


v1 · · · vλ r1 · · · rρ
1 · · · 1 0 · · · 0


. (4)

A nonempty intersection of two polyhedra is a polyhedron. In
the stability analysis we will need to formulate the continuity
condition of a candidate Lyapunov function over the polyhedra
intersections. To this aim we will exploit the following result.

Lemma 7. Given two polyhedra X1, X2 ⊂ Rn such that X1 ∩ X2 ≠ ∅,
then ĈX1∩X2 = ĈX1 ∩ ĈX2 .

Proof. The proof easily follows by applying the homogenization
procedure and then the definitions of polyhedron and cone.

We can now present some definitions and results on copositivity
and cone-copositivity.

Definition 8. A symmetric matrix P ∈ Rn×n is cone-copositive
with respect to a cone C ⊆ Rn if it is positive semidefinite with
respect to that cone, i.e., if x⊤Px ≥ 0 for any x ∈ C. A cone-
copositive matrix will be denoted by P <C 0. If the equality only
holds for x = 0, then P is strictly cone-copositive and the notation
is P ≻C 0. In the particular caseC = Rn

+
, a (strictly) cone-copositive

matrix is called (strictly) copositive.

The notation P < 0, i.e., without any superscript on the inequality,
indicates that P is positive semidefinite, i.e., x⊤Px ≥ 0 for any
x ∈ Rn. The cone-copositivity evaluation of a known symmetric
matrix P on a cone can be always transformed into an equivalent
copositive problem and then to an LMI, as stated by the following
result.
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