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a b s t r a c t

This work presents a passivity-based stability guarantee for the decentralized control of nonlinear power
flow systems. This class of systems is characterized using a graph-based modeling approach, where
vertices represent capacitive elements that store energy and edges represent power flow between these
capacitive elements. Due to their complexity and size, these power flow systems are often decomposed
into dynamically coupled subsystems, where this coupling stems from the exchange of power between
subsystems. Each subsystem has a corresponding model predictive controller that can be part of a
decentralized, distributed, or larger hierarchical control structure. By exploiting the structure of the
coupling between subsystems, stability of the closed-loop system is guaranteed by augmenting each
model predictive controller with a local passivity constraint.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Decentralized control of large systems comprised of dynami-
cally coupled subsystems spans many application areas including
thermal systems (Chandan, 2013; Jain, Koeln, Sundaram, &Alleyne,
2014;Morosan, Bourdais, Dumur, & Buisson, 2010), water distribu-
tion networks (Cantoni et al., 2007; Negenborn, Sahin, Lukszo, De
Schutter, &Morari, 2009; Ocampo-Martinez, Barcelli, Puig, & Bem-
porad, 2012), chemical process networks (Christofides, Scattolini,
de la Peña, & Liu, 2013; Tippett & Bao, 2012), microgrids (Guerrero,
Chandorkar, Lee, & Loh, 2013; Riverso, Farina, & Ferrari-Trecate,
2013; Zamora & Srivastava, 2010), and flownetworks (Bauso, Blan-
chini, Giarre, & Pesenti, 2013; Blanchini, Franco, Giordano, Mar-
danlou, & Montessoro, 2016). These applications, characterized by
the flow and conservation of a resource, can be considered cases
of a larger class of power flow systems. Power flow systems are
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governed by the transportation, conversion, and storage of energy
across domains. Graph-based system representation is a widely
adopted modeling technique that readily captures the structure of
the governing mass and energy conservation laws for these sys-
tems (Blanchini et al., 2016; Heo, Rangarajan, Daoutidis, & Jogwar,
2011; Moore, Vincent, Lashhab, & Liu, 2011; Preisig, 2009). Ver-
tices, or nodes, represent capacitive elements that store energy,
and edges represent power flow paths between these capacitive
elements. While local parameters and functional relationships for
power flow depend on the energy domain, system structure, anal-
ysis, and control are energy domain agnostic. This makes a graph-
based approach a powerful tool for the modeling and control of a
complex system-of-systems, comprised of multiple systems with
various energy domains.

Additionally, the governing energy conservation laws suggest
another unifying inherent feature of these systems: passivity. The
notion of passivity in system modeling and control originated
from the physical principles of energy conservation and dissipation
in electrical and mechanical systems (Hill & Moylan, 1976) and
has become a widely used and highly general methodology in
nonlinear system analysis and control (Khalil, 2002; Sepulchre,
Jankovic, & Kokotovic, 1997; van der Schaft, 1996). Thus, passivity-
based control has been applied to a variety of power flow systems
in centralized (Mukherjee, Mishra, & Wen, 2012; Ortega, Loria,
Nicklasson, & Sira-Ramirez, 1998; Ulbig, 2007) and decentralized
control architectures (Bao & Lee, 2007).

Model Predictive Control (MPC) is well suited for controlling
power flow systems. The ability to account for actuator and state
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constraints and utilize communication and disturbance preview
information allows MPC to maximize the performance and ef-
ficiency of these systems. Centralized, passivity-based, MPC has
been implemented in Falugi (2014), Løvaas, Seron, and Good-
win (2007), Raff, Ebenbauer, and Allgöwer (2007), Sredojev and
Eaton (2014) and Yu, Zhu, Xia, and Antsaklis (2013). Decentralized
passivity-basedMPC extends this approach to systemswith a large
number of states and actuators (Tippett & Bao, 2012; Varutti, Kern,
& Findeisen, 2012). In these approaches, along with those devel-
oped in Arcak and Sontag (2008) and Yu and Antsaklis (2010), sta-
bility is assessed with a global, system-wide matrix condition that
accounts for the subsystem interconnection topology and the gain
of the coupling between subsystems.

The aim of this paper is to present a purely decentralized and
easily implementable method for augmenting existing decentral-
ized control frameworks that guarantees stability of the over-
all closed-loop system. The relative simplicity of the approach is
enabled by focusing on the control of power flow systems rep-
resented as graphs. The proposed approach identifies a set of
inputs and outputs that render each subsystem passive. Neighbor-
ing subsystems form a negative feedback connection, establishing
passivity of the overall system. While the approach relies on a
graph-based representation of the system, a nonlinear, affine in
control, power flow representation provides applicability to awide
class of systems. Actuator input and state constraints are consid-
ered, with slack variables on the state constraints to avoid infeasi-
bility issues. Through the addition of a nonlinear constraint to each
controller, the proposed approach provides simple implementa-
tion and reduced conservatism compared to standard passivity-
based approaches.

The remainder of this paper is organized as follows. Section 2
introduces the graph-based modeling framework for the class of
power flow systems. Section 3 presents the main results of the
paper including establishing passivity of individual subsystems,
analyzing the passivity-preserving interconnections between sub-
systems, developing a passivity constraint for eachMPC controller,
and proving the stability of the closed-loop system. Concluding re-
marks are provided in Section 4.

1.1. Notation

The symbol R denotes the set of real numbers. For the scalar
function f (x), N (f (x)) = {x|f (x) = 0} denotes the zero set of
f (x). A vector v with elements vi is defined as v = [vi]. Similarly,
a matrix M with elements mjk in the jth row and kth column is
defined as M = [mjk]. The eigenvalues of matrix A ∈ Rn×n are
λk(A), k ∈ [1, n] and their real parts are denoted Re λk(A), k ∈

[1, n].

2. Class of systems

Consider a power flow system composed of N interconnected
subsystems Si, i ∈ [1,N]. Each subsystem is represented by an
oriented graph Gi = (Vi, Ei) with the set of vertices Vi and set of
edges Ei. Each oriented edge ei,j ∈ Ei represents power flow in Si,
where positive power Pi,j flows from the tail vertex vtail

i,j to the head
vertex vhead

i,j . Each vertex vi,k ∈ Vi has an associated state xi,k that
represents the energy stored in that vertex. Thus, the dynamic of
each vertex vi,k satisfies the energy conservation equation

Ci,kẋi,k =


ei,j∈Eini,k

Pi,j −


ei,j∈Eouti,k

Pi,j, (1)

where Ci,k > 0 is the energy storage capacitance of vertex vi,k and
E in
i,k and Eout

i,k represent the sets of edges oriented into and out of
vertex vi,k.

Fig. 1. Notional subsystem exemplifying the graph-based power flow represen-
tation with key power flows and states highlighted in red. Dashed lines indicate
elements that serve as disturbances to the subsystem. (For interpretation of the ref-
erences to color in this figure legend, the reader is referred to theweb version of this
article.)

Assumption 1. The power flow Pi,j along edge ei,j is defined as

Pi,j = fi,j(xtaili,j , xheadi,j ) + gi,j(xtaili,j , xheadi,j )ui,j, (2)

where xtaili,j and xheadi,j are the states of the tail and head vertices
vtail
i,j and vhead

i,j , ui,j is an associated actuator input, and fi,j, gi,j :

R × R → R. Additionally, fi,j is Lipschitz, twice continuously
differentiable, and fi,j(0, 0) = 0while gi,j is continuous, gi,j(0, 0) =

0, and the intersection of the zero sets of gi,j is the origin,
j N


gi,j(xtaili,j , xheadi,j )


= {0}.

Fig. 1 shows a graph of an example subsystem Si used to identify
key components. For this example subsystem, there are three paths
for power to enter or exit the subsystem. For the two dashed edges
oriented into the subsystem, the power flow along these edges,
denoted P in

i,1 and P in
i,2, is treated as a disturbance to the subsystem

and these edges are not included inGi. The third path is represented
by an edge oriented out of the subsystem, labeled Pout

i,1 . Power flow
along this type of edge follows the relationship from (2), where
now xheadi,j is a sink vertex state xti,1. These sink states are not states
of Si and thus are disturbances to the subsystem, representing
the surrounding environment. Finally, as indicated in Fig. 1, each
subsystem has a subset xini of the states xi that represent the states
directly affected by the inlet power flows P in

i .
LetMi = [mi,jk]be the incidencematrix of graphGi (West, 2001)

where

mi,jk =


+1 vi,j is the tail of ei,k
−1 vi,j is the head of ei,k
0 else


. (3)

Then, based on (1), the subsystem dynamics are
Ciẋi
ẋti


= −MiPi +


Di
0


P in
i , (4)

where xi are the states of the dynamic vertices, xti are the states
of the sink vertices, Ci = diag([Ci,k]) is a diagonal matrix of the
capacitances of the dynamic vertices, Pi are the power flows along
the edges of Gi, P in

i are the source power flows entering Si, and
Di = [di,jk] is a matrix where

di,jk =


1 vi,j is the head of P in

i,k
0 else


. (5)

Since xti are disturbances to the subsystem, not states, Mi is
partitioned as

Ciẋi = −M iPi + DiP in
i , Mi =


M i
M i


. (6)
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