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a b s t r a c t

In this paper, we consider stabilization for a multi-dimensional heat equation with internal control
matcheddisturbance. The active disturbance rejection control approach is adopted in thiswork. First of all,
we estimate the disturbance in terms of the output. Thenwe cancel the disturbance by its approximation.
In the end, we design some control strategies to stabilize the anti-stable system.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

In this work, we consider the stabilization of the following
multi-dimensional heat equation:yt(x, t) − △y(x, t) − ay(x, t) = χω(U(x, t) + d(x, t)),

(x, t) ∈ Ω × (0, +∞),
y(x, t) = 0, (x, t) ∈ ∂Ω × (0, +∞),

(1)

where Ω is a bounded domain in Rd (d ≥ 1) with Lipschitz bound-
ary, ω ⊂ Ω is an nonempty subdomain of Ω , χω is the character-
istic function of ω, a > 0 is a fixed number, U(x, t) is the control
function, and d(x, t) can be regarded as an uncertainty disturbance
on the control, which comes from outside of the system. Usually,
the disturbance on the control cannot be avoided when control
plans are carried out in the system. In this paper, we suppose that

χωd(x, t) ∈ L∞(0, ∞; L2(ω)),

χωdt(x, t) ∈ L∞(0, ∞; L2(ω)).
(2)

The heat equation is one of the most important second order par-
tial differential equations, and this controlled system plays an im-
portant role in industry application for temperature control (see
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Christofides, 1998). It is well known that the Dirichlet boundary
value problem
yt(x, t) − △y(x, t) − ay(x, t) = 0, (x, t) ∈ Ω × (0, +∞),
y(x, t) = 0, (x, t) ∈ ∂Ω × (0, +∞).

(3)

is unstable if a is bigger than the first eigenvalue of −△. In the
case without disturbance, system (1) can be exponentially stabi-
lized with the feedback control

U(x, t) = −ky(x, t), (x, t) ∈ Ω × (0, +∞), (4)

where k is a positive number big enough (see Barbu, 2013; Barbu,
Lefter, & Tessitore, 2002 and Barbu & Wang, 2003). However, con-
trol (4) fails to deal with the disturbance on the control. To the
best of our knowledge, this problem for PDEs was first studied in
Guo and Jin (2013) for the stability of the one-dimensional anti-
stable wave equation. The main idea in Guo and Jin (2013) is that
the disturbance can be estimated in terms of the outputs, and then
it can be canceled. This strategy is also called the active distur-
bance rejection control (ADRC) strategy, which was first proposed
byHan inHan (2009). The results of the ADRC for general nonlinear
lumped parameter systems are available recently in Guo and Zhao
(2013). Another important paper we should mention is Krstic and
Smyshlyaev (2008). In Krstic and Smyshlyaev (2008), the authors
introduced the adaptive design to handle the parabolic PDEs with
disturbance and anti-damping. For other relatedworks on this sub-
ject, we refer to Freidovich andKhalil (2008), Guo andGuo (2013b),
Han (2009), Krstic (2010), Krstic, Guo, Balogh, and Smyshlyaev
(2008), Vazqueza and Krstic (2008) and Smyshlyaev and Krstic
(2007a,b), and the references therein. It should be pointed out that
many control methods aforementioned have also been applied to
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dealwith uncertainties in PDEs. However, there is fewwork on sta-
bilization formulti-dimensional PDEs. In our work, wemainly deal
with the stabilization of multi-dimensional anti-stable heat equa-
tions with a disturbance on the control.

The paper is organized as follows. In Section 2, we will present
the main result and its proof. The numerical simulation will be
given in Section 3.

2. The main result

In this work, we study the stability of system (1) when (2)
holds. The objective of our work is to design a continuous control
U(x, t), which is based on the output, to stabilize system (1) with
disturbance d(x, t) on the control.

First of all, we introduce some notations. Let {λi}
∞

i=1, 0 < λ1 <
λ2 ≤ · · · ≤ λn . . . , be the eigenvalues of −△ with the Dirichlet
boundary condition on Ω , and {ei}∞i=1 be the corresponding eigen-
functions satisfying that ∥ei(x)∥L2(Ω) = 1, i = 1, 2, 3 . . . , which
constitutes an orthonormal basis for L2(Ω). Then, the disturbance
function χωd(x, t) can be written as

χωd(x, t) =

∞
i=1

di(t)ei(x), (5)

where di(t) =


Ω
ei(x)χωd(x, t)dx, i = 1, 2, 3 . . . , are the Fourier

coefficients of χωd(x, t). In addition to (2), we suppose that the fol-
lowing condition holds.

• Condition (C): The Fourier series (5) is uniformly convergent in
L2(Ω) for any t ∈ [0, +∞). Namely, for any δ > 0, there exists
a positive number N = N(δ), which is independent of t , such
that

i>N

di(t)ei(x)


L2(Ω)

< δ, for any t ∈ [0, +∞). (6)

Remark 2.1. (1) In Guo and Guo (2013a,b), and Guo, Guo, and
Shao (2011), the authors discussed the case that the distur-
bance function was taken as harmonic disturbance, in which
case Condition (C) holds naturally.

(2) If the disturbance function d(x, t) = f (t)G(x), where G(x) ∈

L2(Ω) and f (t) is a bounded function from [0, +∞) to R, then
Condition (C) also holds.

In this paper, we suppose the output measurement to be

Yi(t) =


Ω

ei(x)y(x, t)dx, i = 1, 2, 3 . . . . (7)

By direct computation,

Y ′

i (t) =


Ω

ei(x)yt(x, t)dx

= −λiYi(t) + aYi(t) +


Ω

ei(x)χωU(x, t)dx + di(t). (8)

We design a state observer to estimate Yi(t) and di(t) as in Guo and
Zhao (2011):

Ŷ ′

iε(t) =


Ω

ei(x)χωU(x, t)dx +diε(t)
+(a − λi)Yi(t) +

1
ε


Yi(t) − Ŷiε(t)


,

d̂′

iε(t) =
1

4µε2


Yi(t) − Ŷiε(t)

 (9)

where ε > 0 is the small tuning parameter, then the errors

Ỹiε(t) = Yi(t) − Ŷiε(t), d̃iε(t) = di(t) − d̂iε(t) (10)

satisfy
Ỹ ′

iε(t) = d̃iε(t) −
1
ε
Ỹiε(t),

d̃′

iε(t) = −
1

4µε2
Ỹiε(t) + d′

i(t).
(11)

Lemma 2.1. Suppose that (2) holds, and µ > 1. Then, for any given
T > 0, it follows that

|Ỹiε(t)| + |d̃iε(t)| → 0, (12)

as ε → 0, uniformly for t ∈ [T , +∞), and i = 1, 2, 3 . . . .

Remark 2.2. While the main idea is derived from Theorem 2.1 of
Guo and Zhao (2011) for the case of ODEs, we would rather give
the proof here in detail for the sake of completeness.

Proof. Let Z̃iε(t) =
1
ε
Ỹiε(t), i = 1, 2, 3 . . . , in (11),

Φiε(t) =


Z̃iε(t)
d̃iε(t)


, Di(t) =


0

d′

i(t)


,

A =

 −1 1

−
1
4µ

0

 .

Then, we can rewrite (11) as

Φ ′

iε(t) =
1
ε
AΦiε(t) + Di(t). (13)

The eigenvalues of A are

µ1 = −
1
2


1 −


1 −

1
µ


, µ2 = −

1
2


1 +


1 −

1
µ


.

It is easy to check that µ2 < µ1 < 0, when µ > 1. Thus, there
exists a constant L > 0, which is independent of ε, such that
∥e

1
ε At∥ ≤ Le

1
ε µ1t . The solution of (13) can be written as

Φiε(t) = e
1
ε AtΦiε(0) +

 t

0
e

1
ε A(t−τ)Di(τ )dτ . (14)

It follows that

∥Φiε(t)∥R2 ≤

e 1
ε AtΦiε(0)


R2

+

 t

0
e

1
ε A(t−τ)Di(τ )dτ


R2

≤ Le
1
ε µ1t∥Φiε(0)∥R2 +

 t

0
Le

1
ε µ1(t−τ)

∥Di(τ )∥R2dτ

≤ Le
1
ε µ1t∥Φiε(0)∥R2 +

Lε
µ1

∥d′

i(t)∥L∞(0,∞). (15)

By (2) and (5),we obtain that∥d′

i(t)∥L∞(0,∞) are uniformly bounded
for i = 1, 2, 3 . . . . Thus, for any T > 0,1ε Ỹiε(t)

+ |d̃iε(t)| → 0, as ε → 0, (16)

uniformly for t ∈ [T , +∞), and i = 1, 2, 3 . . . . This shows (12)
holds. �
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