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a b s t r a c t

This paper addresses the problem of synchronizing orthogonal matrices over directed graphs. For
synchronized transformations (or matrices), composite transformations over loops equal the identity.
We formulate the synchronization problem as a least-squares optimization problem with nonlinear
constraints. The synchronization problem appears as one of the key components in applications ranging
from 3D-localization to image registration. The main contributions of this work can be summarized
as the introduction of two novel algorithms; one for symmetric graphs and one for graphs that are
possibly asymmetric. Under general conditions, the former has guaranteed convergence to the solution
of a spectral relaxation to the synchronization problem. The latter is stable for small step sizes when the
graph is quasi-strongly connected. The proposed methods are verified in numerical simulations.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

This paper introduces two new distributed algorithms for
the problem of synchronizing orthogonal matrices over graphs.
Synchronization means that compositions of transformations
(multiplications of matrices) over loops in the graph equal the
identity (matrix) (Bandeira, Singer, & Spielman, 2013; Bernard,
Thunberg, Gemmar et al., 2015; Singer, 2011; Wang & Singer,
2013). Thus, ‘‘synchronization’’ does not refer to the related con-
cepts of consensus (Olfati-Saber & Murray, 2004a) or rendezvous,
e.g., attitude synchronization (Thunberg, Song, Montijano, Hong, &
Hu, 2014). We formulate the problem as a nonlinear least-squares
optimization with matrix variables (Absil, Mahony, & Sepulchre,
2009; Helmke & Moore, 2012). For symmetric communication
topologieswe provide an algorithmwith strong convergence guar-
antees — the solution converges to the optimal solution of a spec-
tral relaxation, which in turn is known to produce near-optimal
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solutions. For graphs that are possibly asymmetric we provide an
algorithmwithweaker convergence guarantees butwith good per-
formance in numerical simulations.

The synchronization problem appears as one of the key
components in the following applications: the 3D-localization
problem, where the transformations are obtained from camera
measurements; the generalized Procrustes problem, where scales,
rotations, and translations are calculated between multiple point
clouds (Gower & Dijksterhuis, 2004); the image registration prob-
lem, where transformations are calculated between multiple im-
ages (Bernard, Thunberg, Husch et al., 2015). There are also many
other interesting applications for the synchronization problem, see
Section 1.2 in Boumal (2015). Due to sensor and communication
limitations, there is often a need to use distributed protocols for
the 3D-localization problem and several approaches have been
proposed recently (Aragues, Sagues, & Mezouar, 2015; Montijano,
Zhou, Schwager, & Sagues, 2014; Tron & Vidal, 2014).

If we exclude the requirement that the synchronizationmethod
shall be distributed, there is an extensive body of work. Govindu
et al. have presented several approaches based on Lie-group aver-
aging, where a first-order approximation in the tangent space is
used (Govindu, 2004, 2006; Govindu & Pooja, 2014). Singer et al.
have presented several optimization approaches (Bandeira et al.,
2013; Chaudhury, Khoo, & Singer, 2013; Hadani & Singer, 2011a,b;
Singer, 2011; Singer & Shkolnisky, 2011; Wang & Singer, 2013).
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Pachauri et al. have addressed the special case where the matri-
ces are permutation matrices (Pachauri, Kondor, & Singh, 2013). In
Wang and Singer (2013), three types of relaxations of the problem
are presented: semidefinite programming relaxation (see Boumal,
2015 for an extensive analysis of this approach); spectral relax-
ation; least unsquared deviation in combination with semidefinite
relaxation. These three relaxations were evaluated in the proba-
bilistic framework where the error to the ground truth was calcu-
lated in numerical experiments. The simulations showed that the
first two approaches were on par, whereas the last approach per-
formed slightly better. Furthermore, the last approach was signif-
icantly more robust to outliers. The first distributed algorithm we
present has a connection to the second category of the three relax-
ations above, since the matrices in the algorithm converge to the
optimal solution of the spectral relaxation. Ourmethods are extrin-
sic, in the sense that the matrices are calculated in Rd×d and then
projected onto the set of orthogonal matrices. The opposite to ex-
trinsic methods are intrinsic methods where no projections from
an ambient space occur. In Afsari, Tron, and Vidal (2013), intrinsic
gradient descent methods are studied for the problem of finding
the Riemannian center of mass.

The contributions of this work can be summarized as the
introduction of two novel algorithms (Algorithms 1 and 2) for
distributed synchronization of orthogonal matrices over directed
graphs. For both algorithms we provide conditions for guaranteed
convergence. The main result of the paper is the above-mentioned
convergence in Algorithm 1 to the optimal solution of the spectral
relaxation problem (Proposition 14). Previousworks in the context
of distributed algorithms have focused on undirected graphs and
3D rotations (Aragues et al., 2015; Montijano et al., 2014; Tron &
Vidal, 2014). However, in this work we consider directed graphs
and arbitrary dimensions. It should be noted that some of the
existing algorithms can be extended to higher dimensions and are
given for the 3D-case mostly for clarity of exposition.

The distributed approaches in this work bear a resemblance to
linear consensus protocols (Jadbabaie & Morse, 2003; Mesbahi &
Egerstedt, 2010; Olfati-Saber, Fax, & Murray, 2007; Olfati-Saber
& Murray, 2004b). The methods also share similarities with the
eigenvectormethod inHoward, Cochran,Moran, and Cohen (2010)
and gossip algorithms (Boyd, Ghosh, Prabhakar, & Shah, 2006).
The important states in our algorithms are matrices, and those
combined converge to a tall matrix whose range space is a certain
linear subspace. In the case of symmetric communication between
agents, the proposed method can either be interpreted as an
extension of the power method or the steepest descent method. In
ourmethods, instead of using the graph Laplacianmatrix (Mesbahi
& Egerstedt, 2010), matrices similar to the graph connection
Laplacian matrix (Singer &Wu, 2012) are used. These matrices can
be seen as a generalizations of the graph Laplacianmatrix, inwhich
the scalars are replaced by matrix blocks.

The paper proceeds as follows. In Section 2 we introduce
the definitions that are necessary in order to precisely state
the problem, which is done in Section 3. Subsequently, the
distributedmethod for the case of symmetric graphs (Algorithm 1)
is introduced and analyzed in Section 4. In Section 5, the distributed
method for the case of directed and possibly asymmetric graphs
(Algorithm 2) is introduced and analyzed. In Section 6, the paper is
concluded. For those propositions and lemmas that appearwithout
proofs (if nothing else is mentioned), the proofs are found in
an extended version of this paper available at arXiv (Thunberg,
Bernard, & Goncalves, 2017).

2. Preliminaries

2.1. Directed graphs

Let G = (V, E) be a directed graph, where V = {1, 2, . . . , n} is
the node set and E ⊂ V ×V is the edge set. Throughout the paper,

the notationA ⊂ B means that every element inA is contained in
B. The set Ni is the set of neighboring nodes of node i and defined
by Ni = {j : (i, j) ∈ E}. The adjacency matrix A = [Aij] for the
graph G is defined by Aij = 1 if (i, j) ∈ E and Aij = 0 if (i, j) ∉ E .
The graph Laplacianmatrix is defined by L = diag(A1n)−A,where
1n ∈ Rn is a vectorwith all entries equal to 1. In order to emphasize
that the adjacency matrix A, the graph Laplacian matrix L and the
Ni sets depend on the graph G, we may write A(G), L(G) and Ni(G)
respectively. For simplicity however, we mostly omit this notation
and simply write A, L, and Ni.

Definition 1 (Connected Graph, Undirected Path). The directed
graph G is connected if there is an undirected path from any node
in the graph to any other node. An undirected path is defined
as a (finite) sequence of unique nodes such that for any pair
(i, j) of consecutive nodes in the sequence it holds that ((i, j) ∈

E) or ((j, i) ∈ E).

Definition 2 (Quasi-strongly Connected Graph, Center, Directed
Path). The directed graph G is quasi-strongly connected (QSC) if it
contains a center. A center is a node in the graph to which there is
a directed path from any other node in the graph. A directed path
is defined as a (finite) sequence of unique nodes such that any pair
of consecutive nodes in the sequence comprises an edge in E .

Definition 3 (Strongly Connected Graph). The directed graph G is
strongly connected if for all pairs of nodes (i, j) ∈ V × V , there is
a directed path from i to j.

Definition 4 (Symmetric Graph). The directed graph G = (V, E) is
symmetric if ((i, j) ∈ E) ⇒ ((j, i) ∈ E) for all (i, j) ∈ V × V.

Given a graph G = (V, E), the graph Ḡ = (V, Ē) is the graph
constructed by reversing the direction of the edges in E , i.e.,
(i, j) ∈ Ē if and only if (j, i) ∈ E . It is easy to see that A(Ḡ) =

(A(G))T and L(Ḡ) = diag((A(G))T1n) − A(G)T .

2.2. Synchronization or transitive consistency of matrices

The set of invertible matrices in Rd×d is GL(d, R) and the
group of orthogonal matrices in Rd×d is O(d) = {R ∈ Rd×d

:

RTR = Id}. The set SO(d) comprises those matrices in O(d) whose
determinants are equal to 1.

Definition 5 (Transitive Consistency).

(1) The matrices in the collection {Rij}(i,j)∈V×V of matrices in
GL(d, R) are transitively consistent for the complete graph if
Rik = RijRjk for all i, j and k.

(2) Given a graph G = (V, E), the matrices in the collection
{Rij}(i,j)∈E of matrices in GL(d, R) are transitively consistent for
G if there is a collection {Rij}(i,j)∈V×V ⊃ {Rij}(i,j)∈E such that
{Rij}(i,j)∈V×V is transitively consistent for the complete graph.

If it is apparent by the context, sometimes we will be less strict
and omit tomentionwhich graph a collection of transformations is
transitively consistent for. Another word for transitive consistency
is synchronization. We will use the two interchangeably. A
sufficient condition for synchronization of the Rij-matrices for any
graph is that there is a collection {Ri}i∈V of matrices in GL(d, R)
such that

Rij = R−1
i Rj (1)

for all (i, j) ∈ E . Lemma 7 below provides additional important
information. The result is similar to that in Tron and Vidal (2014).
For the statement of the lemma, the following definition is needed.
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