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a b s t r a c t

This paper investigates the problem of event-triggered control for the synchronization of networks of
nonlinear dynamical agents; distributed model-based approaches able to guarantee the synchronization
of the overall system are derived. In these control schemes all the agents use a model of their
neighbourhood in order to generate triggering instants in which the local controller is updated and, if
needed, local information based on the adopted control input is broadcasted to neighbouring agents.
Synchronization of the network is proved and the existence of Zeno behaviour is excluded; an event-
triggered strategy able to guarantee the existence of a minimum lower bound between inter-event times
for broadcasted information and for control signal updating is proposed, thus allowing applicationswhere
both the communication bandwidth and the maximum updating frequency of actuators are critical. This
idea is further extended in an asynchronous periodic event-triggered schemes where the agents check a
trigger condition via a periodic distributed communicationwithout requiring amodel based computation.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The problem of controlling a multi-agent system to reach some
coordinated behaviour has been widely exploited in the literature.
Specifically, synchronization of dynamical systems has been inves-
tigated as a paradigm for more specific behaviours like consen-
sus algorithms and platooning and formation control (Arcak, 2007;
Olfati-Saber, Fax, & Murray, 2007).

Distributed control algorithms for multi-agent systems have
often been realized in continuous time. However, continuous time
control laws for such kind of networked systems are not easy or
even impossible to implement in real applicationswhere awireless
medium is often exploited to enact the communication.
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In order to save the bandwidth and avoid unnecessary updating,
the case of event-triggered communication (Tabuada, 2007)
among single and double networked integrators has been studied
in the recent literature, e.g. Dimarogonas, Frazzoli, and Johansson
(2012) and Seyboth, Dimarogonas, and Johansson (2013).

Studies on synchronization of linear systems under an event-
triggered framework can be found in Guinaldo, Dimarogonas,
Johansson, Sánchez, and Dormido (2011) and Liu, Cao, Persis,
and Hendrickx (2013) where the control signals are continuous
in time and are generated via a model based approach while
the communication signals are piecewise constant and based on
the error between the real state and the uncoupled model state.
Synchronization of linear systems has also been investigated in Liu,
Hill, and Liu (2013), although the absence of Johansson, Egerstedt,
Lygeros, and Sastry (1999) is not proved, while in De Persis (2013)
a self-triggered approach is exploited in order to compute the next
triggering instant.

In this paper we study a novel scheme for distributed event-
triggered control able to guarantee synchronization of nonlinear
multi-agent systems by using distributed information related to
each pair of connected agents. The relative information on the
state mismatch between each pair of connected agents will be
considered, in order to generate local events andupdate the control
law. The proposed idea follows a model-based approach, where
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each agent is equipped with its own embedded processor and it
is assumed to know the dynamical model of its neighbours, and
to predict their state evolutions between any two consecutive
triggering events. Both the control and the communication
signals will be piecewise constant and, specifically, neighbouring
nodes will exchange information about their current (piecewise
constant) control input. Such information will allow each node
to predict the evolution of its neighbours and evaluate a trigger
condition. The proposed scheme solves the problem of achieving
synchronization of the interconnected nonlinear systems while
guaranteeing a nonzero lower bound for the inter-event time. The
existence of such a bound is a stronger result than proving simply
the absence of Zeno behaviour, which only excludes accumulation
point over a finite time, but does not prevent triggers to get
infinitesimally close in time. This advantage allows applications
where both the communication bandwidth and the maximum
updating frequency of actuators are critical. Furthermore, it also
allows the development of an asynchronous periodic event-
triggered strategy, where the agents check periodically a trigger
condition and decide whether or not to update their control input.
In this case, no computations based on the model are needed.
Such periodic event-triggered scheme represents the other major
contribution of this work.

For the sake of brevity, we omit a background section on
algebraic graph theory. For more details we refer the reader to
Godsil and Royle (2001).

2. Model-based event-triggered control

Consider N identical dynamical agents of the form:

ẋi = f (t, xi)+ ui, xi, ui ∈ Rn, t ≥ 0, ∀i = 1, . . . ,N. (1)

The aim is to guarantee the emergence of coordinated collective
motion (synchronization) of all the agents by considering a
distributed event-triggered control law. More precisely, the
average trajectory is defined as

x̄(t) =
1
N

N
j=1

xj(t), (2)

and the synchronization errors as ei(t) = xi(t) − x̄(t), which in
stack vector form corresponds to e(t) =


eT1(t), . . . , e

T
N(t)

T
∈

RnN .Wewant to achieve either one of the following twoobjectives:

Bounded synchronization. There exists an arbitrarily small ϵ > 0
such that limt→∞ sup ∥e(t)∥2 ≤ ϵ;

Complete synchronization. limt→∞ ∥e(t)∥2 = 0.

The setup upon which the synchronization analysis will be
conducted in Section 3 is now described. Specifically, we assume
that each agent is able to exchange informationwith a subset of the
other agents. The resulting communication network, which for the
sake of simplicity is assumed to be bidirectional, can be described
by an undirected adjacency matrix A = [aij] defined in the usual
way. Furthermore, we assume that each agent is equipped with
its own embedded processor able to execute a local control law
based on the prediction of the evolution of its neighbours. Thanks
to this local information, each nodewill execute an event-triggered
update of its controller. In particular, at each node i we associate:

(1) a time sequence, {tkij}
∞

kij=0 : N → [0,+∞), of events
corresponding to node i receiving information from node j,
where aij ≠ 0 and kij is the index of the sequence related to
the pair (i, j);

(2) a time sequence, {tki}
∞

ki=0 : N → [0,+∞), of instants when
node i updates its control input ui(t), with ki being the index of
the sequence related to the updating of ui(t).

For any index kij ∈ N (or ki ∈ N) we have that tkij ≤ tkij+1 (or
tki ≤ tki+1).

For each sequence {tkij}
∞

kij=0 we introduce the last function lij(t) :
[0,+∞) → Ndefined as lij(t) = argminkij∈N:t≥tkij


t − tkij


. So, for

each time instant t , tlij(t) is themost recent event occurred to iwith
respect to j, while with tlij(t)+1 we indicate the next event.

Analogously, we define the function li(t) for the sequence
{tki}

∞

ki=0.
As will be clear in what follows, the last indices lij(t) and li(t)

will be used to generate iteratively the sequences {tkij}
∞

kij=0 and
{tki}

∞

ki=0.
Note that, although the communication graph is undirected,

events related to coupled pairs (i, j) are, in general, not syn-
chronous, so tlij(t) ≠ tlji(t). For this reason, the sequences {tkij}

∞

kij=0
and {tkji}

∞

kji=0 are generally different. For the sake of brevity, inwhat
follows we will often omit the explicit dependence of lij and li on
time.

The updating law of the sequences {tkij}
∞

kij=0 and {tki}
∞

ki=0 will be
described in detail in Section 3. Here we anticipate that, for each
node i, the controlui is updated (and so a newevent in the sequence
{tki}

∞

ki=0 is generated) any time a new event on a connected pair
(i, j) happens, i.e., every time there is a new event on one of the
sequences {tkij}

∞

kij=0, with j ∈ Ni. So, the latter are subsequences of
{tki}

∞

ki=0.

3. Event-triggered synchronization

In the setup we introduced, each node knows the dynamical
model and the value of the initial conditions of its neighbours (or
the value of their state at a specific time instant, for example at the
first trigger). Therefore, each node i can compute from any event
at time tkij the flow ϕf (t − tkij , tkij , xj(tkij)), ∀j ∈ Ni. Note that
in order to evaluate it, node i must also have information on the
current control input uj(t) acting on each of its neighbours. Later,
an algorithm able to guarantee that this information is shared
among nodes will be presented. However, we firstly focus on the
triggering events occurring at a generic node i.

For all pairs (i, j) ∈ E we define the trigger error

ẽij(t) := eij(tlij)− eij(t), t ∈ [tlij , tlij+1), (3)

where eij(t) = xj(t)− xi(t).
The error in (3) is referred to the last and the future trigger

instants and is used, as will be clear in what follows, to compute
the future trigger instant tlij+1. Similarly ẽji(t) is defined for the
pair (j, i). Note that, as mentioned earlier, events referred to node
iwith respect to j are, in general, not synchronous with the events
referred to j with respect to i. Indeed, as will be clear in what
follows, in general tlij ≠ tlji since such time instants depend on the
whole neighbourhood of node i and j respectively. For this reason,
the pair (i, j) is treated here as a directed link and, in general,
ẽij(t) ≠ ẽji(t). For all pairs (i, j), we also define the trigger function
as Ξij(t, ẽij(t)) = ∥ẽij(t)∥2 − ςij(t), where ςij(t) is a continuous-
time non-increasing threshold function (particular choices of such
function will be later considered and analysed). Then, an event
occurs when the following condition is violated

Ξij(t, ẽij(t), ςij(t)) < 0. (4)

For a generic agent i, the sequences {tkij}
∞

kij=0 and {tki}
∞

ki=0 are
generated by Algorithm 1 given below, as well as the piecewise
constant control input ui(i), whose value at each update is
computed as in (5), with c > 0 being a coupling gain and Γ =

Γ T > 0 being the inner coupling matrix. Such algorithm is run
independently at each node of the network. Note that, as every
node that triggers changes its control input and broadcasts it to
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