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a b s t r a c t

This work addresses the problem of estimating the region of attraction (RA) of equilibrium points of
nonlinear dynamical systems. The estimates we provide are given by positively invariant sets which
are not necessarily defined by level sets of a Lyapunov function. Moreover, we present conditions for
the existence of Lyapunov functions linked to the positively invariant set formulation we propose.
Connections to fundamental results on estimates of the RA are presented and support the search of
Lyapunov functions of a rational nature.We then restrict our attention to systems governed by polynomial
vector fields and provide an algorithm that is guaranteed to enlarge the estimate of the RA at each
iteration.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The problem of computing the region of attraction (RA) of
asymptotically stable equilibria, or inner estimates to this set (ERA)
(Chiang, Hirsch, &Wu, 1988), is central in several applications and
its relevance is immediately clear for many practical nonlinear
systems for which we can only guarantee local properties of
operating points.

With a converse Lyapunov theorem (Zubov, 1964, Theorem 19),
Zubov answered the question ‘‘[. . . ] Is it possible, with the help of the
Lyapunov function to find a region of variation of the initial values x0
such that ∥φ(t, x0)∥ → 0 as t →∞?’’ (Zubov, 1964, p. 3). The the-
orem states that if S is the RA of an equilibrium then the existence
of a Lyapunov function (LF) satisfying some conditions on such a
set S is necessary and sufficient. However, computing the LF and
the exact RA following Zubov’s theorem requires the solution of
a partial differential equation, which is difficult to obtain in all but
simple cases. However, local solutions (in a compact set around the
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equilibrium point) can be obtained more easily and yield ERAs for
the equilibrium point of interest. In this context, a method to ap-
proximate solutions to the conditions of Zubov (1964, Theorem19)
is obtained with a series expansion of the LF (Zubov, 1964, p. 91)
and is now referred to as Zubov’s Method.

In Vannelli and Vidyasagar (1985), Zubov’s theorem was
modified to consider Lyapunov functions mapping Rn to R≥0 (the
original result is stated in terms of a map from Rn to the interval
[−1, 0]). One of the conditions in Vannelli and Vidyasagar (1985)
imposes that the LF V (x) satisfies V (x) → ∞ whenever x → ∂S
(the boundary of the RA) or whenever ∥x∥ → ∞. Such a property
is described by the observation that ‘‘the candidate must in effect
‘blow up’ near the boundary of the domain of attraction’’. These
functions were called maximal Lyapunov functions (MLFs). One of
the key observations was that rational functions could be used
to approximate MLFs and therefore be used to obtain estimates
of the RA. As a matter of fact, the class of rational functions of
the form V (x) = VN (x)

VD(x)
where VN and VD are polynomials, was

considered as LF candidates in the algorithm proposed in Vannelli
and Vidyasagar (1985) with the boundary of the ERA characterised
by the set {x ∈ Rn

| VD(x) = 0}.
For the sake of clarity, it is important to distinguish between

two similar sounding yet very different objects: a maximal
Lyapunov function (MLF) and a maximal Lyapunov set (MLS). An
MLF is a Lyapunov functionwhich satisfies a strict set of conditions
(cf. Definition 1 in Section 3). In contrast, a MLS is defined as the
largest level set of a given LF contained in a specified set. Computing
the MLS is of interest since one might wish to compute the best
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ERA achievable for a given Lyapunov function (Chesi, 2004, 2013).
Further to the choice of the class of the LF, conservativeness is
introduced by imposing the level sets of the Lyapunov function
to be the ERA, as observed in Khalil (2002, p. 320) ‘‘Estimating the
region of attraction by Ωc = {x|V (x) ≤ c} is simple but usually
conservative. According to LaSalles’s theorem [. . . ] we can work with
any compact set Ω ⊂ D provided we can show that Ω is positively
invariant’’. The statement highlights the fact that contractiveness
of the function defining the ERA is restrictive.

In recent years, sufficient conditions for local stability analysis,
requiring invariance and contractiveness of a set led to numerical
methods for the estimation of the RA with polynomial Lyapunov
functions (Tan & Packard, 2008; Topcu & Packard, 2009; Topcu,
Packard, Seiler, & Balas, 2010). These methods rely on the solution
of non-convex sum-of-squares (SOS) constraints constructed with
the Positivstellensatz (Lasserre, 2009, Theorem 2.14). The solutions
to these problems require a coordinate-wise search since the
non-convex nature results from the fact that some polynomial
variables appear multiplying the Lyapunov function which is itself
a variable. For a detailed description of sum-of-squares methods
for RA estimation the reader is referred to Chesi (2011). For the
case of a given LF, the computation of the MLS was pursued in
Chesi (2013). In Henrion and Korda (2014) the theory of moments
is used to estimate the RA of polynomial systems. We also find in
the literature numerical methods exploiting topological properties
of the boundary of the RA requiring the computation of trajectories
and equilibrium points. However the complexity of such methods
has restricted them to 2-dimensional examples (Chiang et al.,
1988). Recently, in Wang, Lall, and Chiou (2011), set advection
methods are described for polynomial systems.

In this paper we derive conditions based on Lyapunov stability
results that guarantee that trajectories initiated from a positively
invariant set converge to a level set of some LF which is
contractive and invariant therefore guaranteeing such a positively
invariant set to be an ERA. In addition to the positively invariant
estimates, we present conditions to obtain LF certificates of a
specific form which specialises to rational functions in case of
polynomial data. We then propose a numerical method based
on the solution of SOS constraints for the case of polynomial
systems and estimates in the form of semi-algebraic sets (sets
defined by polynomial constraints). Thework in this paper extends
the work of Valmorbida and Anderson (2014) and connects the
concept of maximal Lyapunov functions (Vannelli & Vidyasagar,
1985) to polynomial optimisation techniques based on sum-of-
squares programming. To the best of the authors knowledge this
is the first work to offer a theoretical link between maximal
Lyapunov functions, which completely characterise the ERA (and
can be approximated to arbitrary accuracy by rational functions)
and sum-of-squares methods for rational LF construction. Note
that rational Lyapunov functions were considered in Chesi (2013)
to obtain MLSs.

The paper is organised as follows. The problem is formulated in
Section 2 and we present the main theoretical results in Section 3.
Narrowing our attention to systems described by polynomial
vector fields we describe a computational method for constructing
ERAs based on sum-of-squares programming in Section 4 which is
illustrated by numerical examples in Section 5.

2. Preliminaries

Let R,R≥0,R>0 and Rn denote the sets of real numbers,
non-negative real numbers, positive real numbers and the n-
dimensional Euclidean space respectively. The function f : Rn

→

R is positive definite if f (x) > 0 for all non-zero x ∈ Rn, similarly
if f (x) ≥ 0 for all x ∈ Rn then f is positive semidefinite. The set

of functions g : Rn
→ R which is n-times continuously differen-

tiable is denoted Cn. co(X) denotes the convex hull of the set X,
X◦ its interior, ∂X its boundary, and X its closure. The minimum
(maximum) of a scalar function S(x) in a compact set Y is denoted
minx∈Y(S(x)) (maxx∈Y(S(x))). We also use max to denote the func-
tion taking the maximum of its arguments. For x ∈ Rm the ring of
polynomials inm variables is denoted by R[x]. For p ∈ R[x], deg(p)
denotes the degree of p. A polynomial p(x) is said to be a sum-of-
squares if there exists a finite set of polynomials g1(x), . . . , gk(x)
such that p(x) =

k
i=1 g

2
i (x). The set of SOS polynomials in x is de-

noted by Σ[x1, . . . , xm] which can be abbreviated to Σ[x]. Equiv-
alently, p(x) is SOS if there exists a positive semidefinite matrix Q
such that p(x) = ZT (x)QZ(x) where Z(x) is a vector of monomials
(Parrilo, 2000). Note that the search for Q can be formulated as a
semidefinite programme and thus solved using convex optimisa-
tion techniques (Vandenberghe & Boyd, 1996).

Consider the dynamical system

ẋ = f (x) (1)

where f : D → Rn is a locally Lipschitz map from a domain
D ⊂ Rn to Rn, with 0 ∈ D . Let us assume x = 0 is an equilibrium
point, i.e. 0 ∈ {x ∈ Rn

|f (x) = 0}. Denote by φ(t, x(0)) the solution
to (1) that is initiated from the point x(0) at time t = 0, the
set L is said to be invariant with respect to (1) provided x(0) =
φ(0, x(0)) ∈ L ⇒ x(t) = φ(t, x(0)) ∈ L, ∀t ∈ R. Furthermore, L
is said to be positively invariant with respect to (1) if the previous
implication holds for all t ≥ 0. Given a (continuous) function
R : Rn

→ R we define the set E(R, γ ) := {x ∈ Rn |R(x) ≤ γ }
for some γ > 0 and so E◦(R, γ ) = {x ∈ Rn |R(x) < γ } for the
same γ . Additionally, provided that a function V : Rn

\ {0} → R>0
satisfies V̇ (x) = ∂V

∂x f (x) < 0 on E(V , γ ) then the set E(V , γ ) is
said to be contractive and invariant, furthermore the function V is
said to be a Lyapunov function (Khalil, 2002, Chapter 4).We assume
throughout thiswork that any function used to define a contractive
set is in classC1. The regionof attraction of an asymptotically stable
equilibrium point x∗ of (1) is defined as the set

S :=


x ∈ Rn

φ(t, x)is defined ∀ t ≥ 0,
lim
t→∞

φ(t, x) = x∗

, (2)

without loss of generality, we will assume throughout this paper
that the equilibrium point of interest is at the origin, i.e. x∗ = 0.

The focus of this paper is to construct inner estimates of S by
computing positively invariant sets.

3. Main results

In this section we present conditions to certify that a compact
set is a positively invariant set and provides an estimate of the
RA for the origin of (1). Furthermore, it is shown how, under an
additional condition the estimate of the RA is characterised by a
Lyapunov function.We then extend these results to the casewhere
the system under study is affected by parametric uncertainty.

3.1. Region of attraction estimates

The following theorem verifies that a compact set is positively
invariant and defines an estimate of the RA of the equilibrium
point at the origin, and allows us to obtain functions of which the
denominator provides the RA estimate.

Theorem 1. Given R : Rn
→ R, R ∈ C1 and γ > 0, satisfying

E(R, γ ) ⊂ D is compact and 0 ∈ E(R, γ ), (3a)
−⟨∇R(x), f (x)⟩ > 0 ∀ x ∈ ∂E(R, γ ), (3b)
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