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a b s t r a c t

This paper studies the consensus problem for a class of general second-ordermulti-agent systems (MASs)
with communication delay. We first consider the delay-free case and obtain a necessary and sufficient
condition for consensus. Then, based on the obtained conditions for the delay-free case, we deduce an
explicit formula for the delay margin of the consensus for the case with time delay using the relationship
between the roots of the characteristic equation and the time delay parameter. In addition, we consider
the special case where the second-order model is a double integrator. For this case, simpler consensus
conditions under communication delay are provided.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Network consensus is a fundamental distributed control and
optimization problem. After a couple of decades of active research
on network consensus, it is well recognized by now that consensus
control finds wide applications in areas including multi-agent
coordination (such as coordinated decision making (Bauso, Giarre,
& Pesenti, 2003), vehicle formations (Fax & Murray, 2004),
rendezvous problem (Lin, Morse, & Anderson, 2003), distributed
computation (Lynch, 1997), and flocking (Olfati-Saber, 2006),
et al.), smart electricity networks (Ma, Chen, Huang, &Meng, 2013)
and biological group behavioral analysis (Strogatz, 2001). The key
of consensus control is to design an appropriate consensus protocol
based on local information exchange such that all the agents (or
nodes) in a network agree upon certain quantities of common
interest.

The pioneering work of Olfati-Saber and Murray (2004) solved
an average consensus problem for first-order integrator networks
by using the algebraic graph theory and frequency domain
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analysis. Since then, there has been a large number of results
on consensus, e.g., Avrachenkov, Chamie, and Neglia (2011),
Fax and Murray (2004), Moreau (2005), Olfati-Saber, Fax, and
Murray (2007) and Ren and Beard (2005). All of the above results
on the first-order consensus problems focus on the first-order
integrator systems or networks without time delay. However,
the conditions that can guarantee consensus for the first-order
MASs, for example, the network communication topology has
a directed spanning tree, may not ensure the second-order
MASs to reach consensus. In addition, in most applications, it is
inevitable that time delay exists in the information transmission
between agents due to communication congestion and finite
transmission bandwidth. The existence of the communication
delay will inevitably deteriorate the control performance and
stability of a networked control system. Therefore it is important
to consider consensus conditions of higher order MASs with
communication delay.

Although there have been several papers studying the consen-
sus problem with time delay, such as Hou, Fu, and Zhang (2016),
Wang, Saberi, Stoorvogel, Grip, and Yang (2013), Wang, Xu, and
Zhang (2014) and Xu, Zhang, and Xie (2013), they only focus on
first-order consensus or they cannot give the explicit formula for
the time delay margin for achieving consensus. Middleton and
Miller (2007) considered time delay margin for unstable plants us-
ing frequency domain analysis. Second-order consensus problems
can model more realistic dynamics of MASs. As far as the authors
know, there are few papers considering the consensus problem for
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general second-order dynamic systems with time delay. Ren and
Atkins (2007) and Yu, Chen, and Cao (2010) considered the second-
order consensus problem but only focused on double integrator
systems.

In this paper, we consider the consensus condition for a class of
MASs which contain a general second-order linear dynamic model
for each agent and involve communication delay between agents.
We first obtain a necessary and sufficient condition for consensus
for the delay-free case. Then, based on the obtained conditions for
the delay-free case, we deduce an explicit formula for the delay
margin of the consensus for the case with time delay by analyzing
the relationship between the roots of characteristic equation and
the time delay parameter. This leads to the realization that there
exists a fundamental tradeoff between consensus performance and
robustness to time-delay. We will also provide a more detailed
analysis on the consensus condition for the important special case
where each agent is a double integrator, and provide a simple and
explicit expression for the time delay margin for this case.

2. Problem formulation

2.1. Algebraic graph theory basics

Some basic knowledge on algebraic graph theory is needed for
this paper. A multi-agent system (or network) is assumed to have
N agents. The communication topology between agents is denoted
by a graph G = {V, E, A}, where V = {1, 2, . . . ,N} is the set of
agents, E ⊂ {(i, j) : i, j ∈ V} is the edge set, and A = [aij] ∈ RN×N

is the so-called weighted adjacency matrix (or adjacency matrix, for
short). Each edge (i, j) denotes that agent j obtains information
from agent i. The neighboring set Ni of agent i is the set of the
agents that can obtain information from agent i. The nonnegative
elements and aij > 0 if and only if i ∈ Ni. The adjacency matrix
A = {aij} is such that each element aij > 0 if (i, j) ∈ E , or
aij = 0. The in-degree of agent i is denoted by di =


j∈Ni

aij =N
j=1 aij and the in-degree matrix D = diag{d1, d2, . . . , dN}. The

Laplacian matrix L of G is defined by L = D − A. Note that
aij = aji, ∀i, j ∈ V if and only if G is an undirected graph. A
spanning tree of a digraph is a directed tree formed by graph edges
that connects all the nodes of the graph. It is well known that
for an undirected graph, L is a symmetric, positive semi-definite
matrix and all of its eigenvalues are non-negative. Note the special
property that L1N = 0N . By denoting all the eigenvalues of L as
λi, i = 1, 2, . . . ,N , some properties of the Laplacian matrix are
recalled below (Lewis, Zhang, Hengstermovric, & Das, 2014).

Lemma 1. The Laplacian matrix L has a simple eigenvalue 0 and all
the other eigenvalues have positive parts if and only if the directed
network has a directed spanning tree. Specially, for an undirected
connected graph, all the eigenvalues of L are real numbers and can
be arranged as 0 = λ1 < λ2 ≤ · · · ≤ λN .

We use the following notations and conventions in this paper:
R denotes the real number field; 1m denotes the m-dimensional
column vector with all components 1; Im denotes the m-
dimensional identity matrix; 0 denotes the zero matrix of
appropriate dimension; Re(θ) and Im(θ) are the real and
imaginary parts of a complex number θ , respectively.

2.2. Consensus protocol

In this paper we consider the following general second-order
linear dynamic model for each agent i ∈ V:

ẋi(t) = vi(t),
v̇i(t) = axi(t) + bvi(t) + ui(t),

(1)

where xi(t) ∈ R is the position state, vi(t) ∈ R is the velocity
state of the ith agent. The initial condition of the agent i refers to
(xi(0), vi(0)).

Remark 2. Apparently, (1) can be seen as ẍi−bẋi−axi = ui, which
is a general second-order differential equation. Alternatively, it can
be seen as ˙̄xi = Ax̄i + Bui with x̄i = [xi, vi]

T , A =


0 1
a b


, B =

0
1


,which is the general case of controllable canonical form of

second-order dynamics.

Definition 1 (Second-order Consensus). A multi-agent system G
with agent model (1) is said to achieve second-order consensus if,
for any initial conditions and i ≠ j, i, j = 1, 2, . . . ,N ,

lim
t→∞

∥xi(t) − xj(t)∥ = 0, lim
t→∞

∥vi(t) − vj(t)∥ = 0.

3. Consensus analysis for the delay-free case

Firstly, we deploy a control protocol without considering the
time delay, which is given by

ui(t) = k1
N
j=1

aij

xj(t) − xi(t)


+ k2

N
j=1

aij

vj(t) − vi(t)


, (2)

where k1 ∈ R and k2 ∈ R are gain coefficients. We de-
fine the (composite) state vector z(t) = [xT (t), vT (t)]T with
the (composite) position vector and velocity vector x(t) =

[x1(t), x2(t), . . . , xN(t)]T , v(t) = [v1(t), v2(t), . . . , vN(t)]T , re-
spectively. The dynamics for the MAS are given by

ż(t) = Φz(t), (3)

where Φ =


0 IN

aIN − k1L bIN − k2L


. Define x̂i(t) = xi(t) − x1(t),

v̂i(t) = vi(t) − v1(t), i = 2, 3, . . . ,N , and the state error vector
as ẑ(t) = [x̂T (t), v̂T (t)]T with x̂(t) = [x̂2(t), x̂3(t), . . . , x̂N(t)]T ,
v̂(t) = [v̂2(t), v̂3(t), . . . , v̂N(t)]T . We obtain the following error
dynamics:

˙̂z(t) = Φ̂ ẑ(t), (4)

where Φ̂ =


0 IN−1

aIN−1 − k1L̂ bIN−1 − k2L̂


, with L̂ = L22+1N−1α

T , and

L22 =


d2 −a23 · · · −a2N

−a32 d3 · · · −a3N
...

...
. . .

...
−aN2 −aN3 · · · dN

 , α =


a12
a13
...

a1N

 .

Apparently, system (1) or (3) achieves consensus if and only if the
error system (4) is asymptotically stable.

Let β = [a21, a31, . . . , aN1]
T , then L =


d1 −αT

−β L22


. Taking the

transformation matrix S =


1 0TN−1

1N−1 IN−1


, then we have

S−1LS =


0 −αT

0N−1 L̂


. (5)

From (5) we can see that the eigenvalues of L̂ are λ2, λ3, . . . , λN .
In order to analyze the asymptotical stability of system (4), we
consider its characteristic equation, i.e.,

det(sI2(N−1) − Φ̂) =

N
i=2

fi(s) = 0,

where

fi(s) = s2 − bs − a + (k2s + k1)λi. (6)
We obtain the following result.
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