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a b s t r a c t

We consider the Newton–Kleinmanmethod for strongly stabilizable infinite-dimensional systems. Under
certain assumptions, themaximal self-adjoint solution to the associated control algebraic Riccati equation
is constructed. The constructed solution is also the maximal solution to the corresponding control
algebraic Riccati inequality.
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1. Introduction

We consider the control algebraic Riccati equation (CARE)

A∗X + XA − XBB∗X + C∗C = 0,

which has been widely studied in the area of systems and control
for both finite-dimensional and infinite-dimensional systems,
together with the corresponding control algebraic inequality
(CARI)

A∗X + XA − XBB∗X + C∗C ≥ 0.

There are many approaches to the study of the CARE and we will
mention only some of them which are most related to this note.
One approach is in the line with Willems (1971), where com-
parison results and a classification of all solutions of the CARE
for finite-dimensional systems have been provided. Moreover, the
solvability of the CARI implies the solvability of the CARE for finite-
dimensional controllable systems (also in Willems, 1971). Nec-
essary and sufficient conditions for the existence of a maximal/
minimal solution of the CARE or CARI for sign-controllable sys-
tems can be found in Scherer (1991). A comparison of the solu-
tions of two CARE associated to different systems was provided for
the first time in Wimmer (1985). A second approach is in terms
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of the Hamiltonian (see e.g. Martensson, 1971). A third approach
is based on Kleinman (1968), and provides iterative procedures
for constructing hermitian solutions of the CARE as proposed in
Gohberg, Lancaster, and Rodman (1986) and Ran and Vreugdenhil
(1988). Moreover, it has been shown in Gohberg et al. (1986) and
Ran and Vreugdenhil (1988) that solvability of the CARI implies the
existence of a maximal solution of the CARI provided that (A, B) is
stabilizable. Furthermore, the maximal solution of the CARI also
satisfies the CARE.

Some of the results mentioned above for finite-dimensional
systems have been extended to infinite-dimensional systems
Σ(A, B, C). Following the approach in Willems (1971), a clas-
sification of all non-negative self-adjoint solution of the CARE
for exponentially stabilizable systems has been proposed in Cal-
lier, Dumortier, and Winkin (1995) and for discrete-time infinite-
dimensional systems in Malinen (2000). In Iftime, Curtain, and
Zwart (2005) a representation of all self-adjoint solutions to the
CAREhas been obtainedunder the following assumptions:A gener-
ates a strongly continuous semigroup, output stabilizability, strong
detectability and the invertibility of the minimal self-adjoint so-
lution of the filter algebraic Riccati equation. Following the ap-
proach in Martensson (1971), the relation between the CARE and
the eigenvectors of the Hamiltonian for Riesz spectral systems has
been studied in Kuiper and Zwart (1993).

In this note the third approach is followed, known in the lit-
erature as the Newton–Kleinman method. The finite-dimensional
case has been initiated in Kleinman (1968). Since then, this prob-
lem has been widely studied for finite-dimensional case (see for
example Ran & Vreugdenhil, 1988 and the references therein) and
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also for infinite-dimensional systems which are exponentially sta-
bilizable (see for example Burns, Sachs, & Zietsman, 2008; Curtain
& Rodman, 1990). However, there are many infinite-dimensional
systemswhich are not exponentially stabilizable but have nice sta-
bility properties (see for example Oostveen, 2000). We provide
a Newton–Kleinman type result for strongly stabilizable infinite-
dimensional systems. More precisely, provided that Σ(A, B, C) is
strongly stabilizable and additional assumptions are satisfied, an
iterative procedure for constructing themaximal self-adjoint solu-
tion to the CARE as the strong limit of Newton–Kleinman iterates.
Moreover, it is shown that the maximal solution of the CARI also
satisfies CARE.

This note is structured as follows. In Section 2 the necessary
concepts are introduced and two preliminary results (Theorem 2.2
and Lemma 2.5) are stated. The main result is Theorem 3.4 and it
is presented in Section 3.
Notation: L(U, Z) denotes the set of bounded operators from the
Hilbert spaceU to theHilbert space Z . Let B∗ be the adjoint operator
of B ∈ L(U, Z). For self-adjoint operators X1, X2 ∈ L(Z), by
X1 ≥ X2 we understand X1 − X2 ≥ 0.

2. Preliminaries

Let Z , Y and U be separable Hilbert spaces. Consider a state
linear system Σ(A, B, C) given by
ż(t) = Az(t) + Bu(t), z(0) = z0 ∈ Z
y(t) = Cz(t), (1)

where B ∈ L(U, Z), C ∈ L(Z, Y ), z ∈ Z , y ∈ Y and u ∈ U .
The unbounded operator A : D(A) ⊂ Z → Z generates a
strongly continuous semigroup T (t). If T (t)z → 0 as t → ∞

(i.e. limt→∞ ∥T (t)z∥Z = 0) for all z ∈ Z , then T (t) is called a
strongly stable semigroup.

Recall now the notions of output stability, output stabilizability
and strong stabilizability.

Definition 2.1. The system Σ(A, B, C) is output stable if there
exists a constant γ > 0 such that

∞

0
∥CT (s)z∥2

Yds ≤ γ ∥z∥2
Z , for all z ∈ Z .

It is known that (see e.g. Grabowski, 1991) output stability of the
system Σ(A, B, C) is equivalent to the existence of a nonnegative
self-adjoint solution Π ∈ L(Z) of the Lyapunov operator equation

⟨Az1, Πz2⟩ + ⟨Πz1, Az2⟩ = −⟨Cz1, Cz2⟩, (2)

where z1, z2 ∈ D(A) ⊂ Z . The following result is a dual version
of Hansen and Weiss (1997, Theorem 3.1). Note that the notion
of output stability for the infinite dimensional systems Σ(A, B, C)
is the same as requiring (in Hansen & Weiss, 1997) that C is an
infinite-time admissible operator for T (t).

Theorem 2.2 (Hansen & Weiss, 1997). Consider the system
Σ(A, B, C). The following statements are equivalent:

• (i) The system Σ(A, B, C) is output stable.
• (ii) There exists an operator Q ∈ L(Z) such that, for every z ∈ Z

Qz :=


∞

0
T ∗(t)C∗CT (t)zdt. (3)

• (iii) There exist operators Π ∈ L(Z), Π ≥ 0 which satisfy the
Lyapunov operator equation (2).

Moreover, if any of the above statements holds, then the following
statements are true:

• (I) Q defined in (3) satisfies (2) and it is the smallest nonnegative
solution of (2).

• (II) For any z ∈ Z, limt→∞ Q
1
2 T (t)z = 0. In particular, if Q > 0

then T (t) is strongly stable.
• (III) If T (t) is strongly stable, then Q is the unique self-adjoint

solution of (2).

Definition 2.3. The systemΣ(A, B, C) is output stabilizable if there
exists an F ∈ L(Z,U) such that Σ


A + BF , B,


F
C


is output

stable.

Definition 2.4. The system Σ(A, B, C) is strongly stabilizable if the
following conditions are satisfied

• it is output stabilizable by some F ∈ L(Z,U), and
• AF := A + BF generates a strongly stable semigroup TF (t).

To the system (1) one associates the classical cost to be
minimized on infinite-time

J(z0, u) :=


∞

0
(⟨Cz(s), Cz(s)⟩ + ⟨u(s), Ru(s)⟩) ds

where R is a self-adjoint coercive operator in L(U). For the sake
of simplicity of the exposition we shall take R = I in the sequel.
The cost J(z0, u) is closely related to the (control) algebraic Riccati
equation (see e.g. Curtain & Zwart, 1995)

⟨Az1, Xz2⟩ + ⟨Xz1, Az2⟩ − ⟨B∗Xz1, B∗Xz2⟩ + ⟨Cz1, Cz2⟩ = 0 (4)

for z1, z2 ∈ D(A) ⊂ Z . Define R(X) weakly by ⟨z1, R(X)z2⟩ being
equal to the left hand side of (5). Then (4) can be written as

⟨z1, R(X)z2⟩ = 0, z1, z2 ∈ D(A) ⊂ Z . (5)

Consider also the control algebraic Riccati inequality (CARI)

⟨z, R(X)z⟩ ≥ 0, z ∈ D(A) ⊂ Z . (6)

Define the sets of self-adjoint solutions of the CARE (5) and the
CARI (6) as

SE :=

X | X = X∗, ⟨z1, R(X)z2⟩ = 0, z1, z2 ∈ D(A)


(7)

SI :=

X | X = X∗, ⟨z, R(X)z⟩ ≥ 0, z ∈ D(A)


. (8)

One would also need the following result.

Lemma 2.5. Consider the system Σ(A, B, C) such that A generates a
strongly stable continuous semigroup T (t). If L = L∗

∈ L(Z) satisfies

⟨Az, Lz⟩ + ⟨Lz, Az⟩ ≤ 0, z ∈ D(A) ⊂ Z, (9)

then L ≥ 0.

Proof. Let z ∈ D(A) ∈ Z , t ≥ 0 and define

f (t) := ⟨T (t)z, LT (t)z⟩,

which is continuous differentiable. By taking the derivative with
respect to t , then integrating on [0, τ ], letting τ → ∞ and using
strong stability of T (t) one has ⟨z, Lz⟩ ≥ 0 on D(A). Using the
density of D(A) in Z the proof is completed. �

3. Main results

Consider a strongly stabilizable system Σ(A, B, C). Let F ∈

L(Z,U) be such that AF := A+BF generates a strongly continuous
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