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a b s t r a c t

This paper aims at designing a non-asymptotic fractional order differentiator for a class of fractional
order linear systems to estimate the Riemann–Liouville fractional derivatives of the output in discrete
noisy environment. The adopted method is a recent algebraic method originally introduced by Fliess and
Sira-Ramirez. Firstly, the fractional derivative of the output of an arbitrary order is exactly given by a new
algebraic formula in continuous noise free case without knowing the initial conditions of the considered
system. Secondly, a digital fractional order differentiator is introduced in discrete noisy cases, which can
provide robust estimations in finite-time. Then, some error analysis is given, where an error bound useful
for the selection of the design parameter is provided. Finally, numerical examples illustrate the accuracy
and the robustness of the proposed fractional order differentiator.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Fractional calculus has a long history and has been becoming
very useful in many scientific and engineering fields, including
control, flow propagation, signal processing, electrical networks,
etc. Bandyopadhyay and Kamal (2015), Concepción, Chen, Vinagre,
Xue, and Feliu-Batlle (2010), Diethelm (2010), Kilbas, Srivastava,
and Trujillo (2006), Miller and Ross (1993) and Podlubny (1998).
For instance, fractional order systems and controllers have been
applied to improve performance and robustness properties in
control design (Sabatier, Farges, Merveillaut, & Fenetau, 2012;
Victor, Malti, Garnier, & Oustaloup, 2013; Yin, Chen, & Zhong,
2014), where the fractional derivatives of the output usually need
to be estimated from its discrete noisy observation. Consequently,
an interesting research topic concerns with designing digital
fractional order differentiators, which should be robust against
noises.
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Various robust fractional order differentiators have been pro-
posed both in the frequency domain and in the time domain. They
can be divided into two classes: model-free fractional order dif-
ferentiators (Chen, Chen, & Xue, 2011; Liu, Gibaru, Perruquetti, &
Laleg-Kirati, 2015; Machado, 2009, 2012) and model-based ones
(Liu & Laleg-Kirati, 2015; Liu, Tian, Boutat, & Laleg-Kirati, 2015;
Wei, Liu, & Boutat, 2016). The first class is obtained by truncating an
analytical expression. Hence, this generates a truncated term error
which can produce an amplitude error (in the vertical sense) and
a shifted error (in the horizontal sense) (Liu et al., 2015). The sec-
ond class is obtained from the differential equations of considered
signals. They do not introduce any truncated term errors.

Existing fractional order differentiators are usually extensions
of integer order differentiators, which generally have one of the
following disadvantages:

• they are sensible to noises, such as the well-known Grün-
wald–Letnikov scheme (Concepción et al., 2010), which is the
extension of the finite difference scheme and only efficient in
noise-free case;

• they produce a truncated term error in the estimated deriva-
tives, such as the model-free fractional order differentiators
proposed in Chen et al. (2011) and Liu et al. (2015), which are
the extension of classical polynomial approximation methods;

• they asymmetrically converge, for instance, the fractional
order Luenberger-like observer, considered as a model-based
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fractional order differentiator, is devoted to estimating the
pseudo-state variables which are the fractional derivatives
of the output (Sabatier et al., 2012). Moreover, a fractional
order observer cannot estimate the fractional derivatives of an
arbitrary order.

Among the existing methods, there is a non-asymptotic alge-
braic method originally introduced by Fliess and Sira-Ramirez for
linear identification (Fliess & Sira-Ramírez, 2003). This method
permits to obtain exact algebraic integral formulae for the desired
estimators, which can provide estimations in finite-time. It has
been shown in Fliess (2006) that, thanks to the integral formulae,
these estimators exhibit good robustness properties with respect
to corrupting noises. By considering these advantages, thismethod
has been extended to design model-free integer order differentia-
tors (Liu, Gibaru, & Perruquetti, 2011; Mboup, Join, & Fliess, 2009)
and model-based ones (Fliess & Sira-Ramírez, 2004; Tian, Floquet,
& Perruquetti, 2008) for non-linear and linear integer order sys-
tems, respectively. More concretely, the latter ones estimate the
integer order derivatives of the output of the following integer or-
der linear system:

n
i=0

ai y(i)(t) = u(t), (1)

where y and u are the output and the input, respectively. Recently,
these non-asymptotic and robust differentiators have been ex-
tended to fractional order case. In Liu et al. (2015), a model-free
differentiator has been designed without considering the system
model. However, it produces a time-delay in the estimation. In
Liu et al. (2015), a model-based differentiator has been proposed
to estimate the non-integer order derivatives of the output of the
system defined in (1). For the same purpose, another model-based
differentiator has been designed by applying the modulating func-
tion method in Liu and Laleg-Kirati (2015). The latter two differ-
entiators do not produce any time-delay in estimations. However,
they are not applicable to fractional order systems. Having these
ideas in mind, the objective of this paper is to extend the alge-
braic method to design a model-based differentiator to estimate
the fractional derivatives of the output of the following fractional
order linear system:

N
i=0

ai D
αi
t y(t) =

L
j=0

bj D
γj
t u(t), (2)

whereDαi
t y andD

γj
t u are the fractional derivatives of the output and

the input, respectively.
The contributions of this paper can be outlined as follows:

• a digital model-based fractional order differentiator is intro-
duced, which has the following advantages: (i) it can be used to
estimate the fractional derivative of the output of an arbitrary
order; (ii) it is given by a new algebraic formula, which does not
contain any source of errors in continuous noise free case; (iii) it
can provide robust estimations in finite-time in discrete noisy
cases, without any truncated term error;

• an error bound is provided for the selection of the design
parameter;

• there is no need on the initial conditions of the considered
system.

This paper is organized as follows: definitions and some
useful properties of Riemann–Liouville fractional integrals and
derivatives are recalled in Section 2. The main results are given in
Section 3. Firstly, the algebraic method is applied to express the
fractional derivatives of the output of the considered system by
a new algebraic formula in continuous noise free case. Secondly,
a digital fractional order differentiator is introduced in discrete

noisy cases. Moreover, some error analysis is given. In Section 4,
numerical results illustrate the accuracy and the robustness of the
proposed fractional order differentiator. Finally, conclusions are
summarized in Section 5.

2. Preliminaries

In this section, definitions and some useful properties of frac-
tional integrals and derivatives are recalled.Moreover, some useful
formulae related to the Laplace transform are given.

2.1. Riemann–Liouville fractional integrals and derivatives

Let I = [0, h] ⊂ R+
2 α ∈ R+, and l = ⌈α⌉, where ⌈α⌉ denotes

the smallest integer larger than or equal to α. Then, the following
definitions are given.

Definition 1 (Podlubny, 1998, p. 65).Theα order Riemann–Liouville
fractional integral of f is defined on ]0, h] as follows:

D−α
t f (t) :=


f (t), if α = 0, t

0
κα(t, τ )f (τ ) dτ , else,

(3)

where κα(t, ·) is defined by:

κα(t, τ ) :=
1

Γ (α)
(t − τ)α−1 , (4)

and Γ (·) is the well-known Gamma function.

Definition 2 (Podlubny, 1998, p. 68). The α order Riemann–
Liouville fractional derivative of f is defined on ]0, h] as follows:

Dα
t f (t) :=

dl

dt l

Dα−l

t f (t)

. (5)

Remark 1. According to (3), if 0 < α < 1, the Riemann–Liouville
fractional integrals are defined by improper integrals. Thus, if l ≠

α, the Riemann–Liouville fractional derivatives are also defined by
improper integrals in (5).

The following formula establishes an additive index law for
Riemann–Liouville fractional integrals and derivatives (Podlubny,
1998, pp. 71–74): ∀ n ∈ N, α ∈ R,

dn

dtn

Dα

t f (t)


= Dn+α
t f (t). (6)

In the following lemma, the Leibniz formula for Riemann–Liouville
integrals involving a polynomial is recalled. The general Leibniz
formula for Riemann–Liouville integrals and derivatives can be
found in Diethelm (2010, p. 33) and Miller and Ross (1993, p. 75),
respectively.

Lemma 1 (Miller & Ross, 1993, p. 53). Let α ∈ R∗
+
and m ∈ N. Then,

the following formula holds:

D−α
t


tmf (t)


=

m
k=0

(−1)k

m
k


Γ (α + k)

Γ (α)
tm−kD−α−k

t f (t). (7)

2.2. Laplace transform formulae

Let us assume that the Laplace transformof f exists,which is de-
noted by f̂ . Then, the Laplace transforms of the Riemann–Liouville

2 In this paper,R+ denotes the set of positive real numbers,R∗
+
(resp.N∗) denotes

the set of strictly positive real numbers (resp. strictly positive integers), and Z∗
−

denotes the set of strictly negative integers.
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