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a b s t r a c t

We propose a new strategy, called method of evolving junctions (MEJ), to compute the solutions for a
class of optimal control problems with constraints on both state and control variables. Our main idea is
that by leveraging the geometric structures of the optimal solutions, we recast the infinite dimensional
optimal control problem into an optimization problem depending on a finite number of points, called
junctions. Then, using a modified gradient flow method, whose dimension can change dynamically, we
find local solutions for the optimal control problem. We also employ intermittent diffusion, a global
optimizationmethod based on stochastic differential equations, to obtain the global optimal solution.We
demonstrate, via a numerical example, thatMEJ can effectively solve path planning problems in dynamical
environments.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

An optimal control problem with constraints seeks to deter-
mine the input (control) u(t) ∈ Rr to a dynamical system that opti-
mizes a given performance functional (maximize profit, minimize
cost, etc.), while satisfying various state and/or control constraints,

min
x,u

 tf

t0
L(x(t), u(t), t)dt + ψ(x(tf ), tf ), (1)

subject to

ẋ = f (x(t), u(t), t), t ∈ [t0, tf ],
x(t0) = x0, M(tf , x(tf )) = 0,
φ(x(t), t) ≥ 0, ϕ(u(t), t) ≥ 0, t ∈ [t0, tf ],

where the state variable x(t) ∈ Rn is often called the trajectory
or path in the phase space. u(t) ∈ Rr is the control variable;
L : Rn

×Rr
×R+

→ R is the running cost;ψ : Rn
×R+

→ R is the
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terminal cost, and tf is the terminal time, which may be undeter-
mined in some problems. φ : Rn

×R+
→ Rp is the state constraint

and ϕ : Rr
× R+

→ Rq is the control constraint. For technical sim-
plicity, we assume that L, φ, ϕ, M are continuously differentiable
with respect to x and t in this paper.

Because many engineering problems can be formulated into
the framework of (1) (Loffe, Tikhomirov, & Makowski, 2009;
Malanowski, 1995), optimal control theory has vast applications
(Ancona & Bressan, 1999, 2007; Hong, 2007). However, due
to the complexity of those applications, few of them can be
solved analytically. Thus numerical methods are often employed
instead. Traditionally, the methods are divided into three cate-
gories,
(1) state-space, (2) indirect, and (3) direct methods. State-space
approaches apply the principle of dynamic programming, which
states that each sub-arc of the optimal trajectory must be optimal.
It leads to the well-known Hamilton–Jacobi–Bellman (HJB) equa-
tions, which are non-linear partial differential equations (PDEs)
(Bellman, 1956; Navasca & Krener, 2007). Indirect methods employ
the necessary condition of optimality known as Pontryagin’s max-
imum Principle (Pontrigin, 1962). This leads to a boundary value
problem,which is then solved by numericalmethods. Thus this ap-
proach is also referred to as ‘‘first optimize, thendiscretize’’. Typical
examples are neighboring extremal algorithm, gradient algorithm,
and quasi-linearization algorithm (Balakrishnan &Neustadt, 1964;
Bryson & Ho, 1975; Livne, Mineau, Bryson, & Denham, 1964; Mc
Reynolds & Bryson, 1965), just to name a few. Direct methods take
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the idea of ‘‘first discretize, then optimize’’. They convert the orig-
inal continuous infinite dimensional control problem into a finite
dimensional optimization problem. The resulting discrete problem
becomes a large scale standard nonlinear programming problem
(NLP) which can be solved by many well established algorithms
such as Newton’s method, Quasi-Newton methods (Acikmese &
Blackmore, 2011; Dennis & Schnabel, 1987; Fletcher, 2013; Gill,
Murray, & Wright, 1981; Harris & Acikmese, 2014; Lin, Loxton, &
Teo, 2014; Loxton, Lin, Rehbock, & Teo, 2012; Loxton, Teo, & Re-
hbock, 2008; Loxton, Teo, Rehbock, & Yiu, 2009; Nocedal &Wright,
2006). Directmethods are nowadays themostwidespread and suc-
cessfully used techniques.

Different from the existing methods, in this paper, we design a
new fast numerical method focusing on a class of optimal control
problems called separable problems (Chow, Lu, & Zhou, 2013,
2012a,b; Lu, Diaz-Mercado, Egerstedt, Zhou, & Chow, 2014). Simply
put, a path is said to be separable, if there exists finite number of
points, called junctions, that divide the path into segments, such
that a constraint can only switch from inactive to active (or vice
versa) at junctions.

The significance of being separable is that the determination of
the entire path boils down to the determination of only a finite
number of junctions and the determination of a finite number
of optimal trajectories of smaller sizes, for which the constraints
are either inactive or active on the entire segment. On the other
hand, in many applications, the optimal solution on each segment
can be computed either analytically or numerically by efficient
algorithms. In this way, the original infinite dimensional problem
of finding the whole path is converted into a finite dimensional
problem, i.e. determining a finite number of junctions. Thus one
may1 gain a tremendous dimensional reduction.

The resulting finite dimensional problem can be handled by
many established algorithms, for example, the gradient descent
method. In this case, each steady state of the gradient descent
flow can be a local minimizer. It is evident frommany applications
that the total number of minimizers can often be very large.
Therefore, it is highly desirable to design methods that are capable
of obtaining the global optimal trajectory. In this paper, we
adopt a recently developed global optimization strategy, called
intermittent diffusion (ID) (Chow, Yang, & Zhou, 2013). The idea
is to add noises (diffusions) to the gradient flow intermittently.
When the noise is turned off, one gets a pure gradient flow
and it quickly converges to a local minimizer. When the noise
is turned on, the perturbed flow becomes stochastic differential
equations (SDEs), which has a positive probability to jump out
of local traps and converges to other minimizers, including the
global one. It can be shown that the local minimizers obtained
will include the global one with probability arbitrarily close to 1 if
appropriate perturbations are added. We call the method outlined
aboveMethod of Evolving Junctions (MEJ).

In the literature, the concept of a junction has been introduced
in the past (Hartl, Sethi, & Vickson, 1995; Khmelnitsky, 2002), and
used in indirect methods (Bonnans & Hermant, 2008; Bonnard,
Faubourg, Launay, & Trélat, 2003). Most of them use junctions
as shooting parameters to solve the Hamiltonian systems. For
example, the one proposed in Bonnans and Hermant (2008) uses a
continuationmethod, also called homotopymethod, togetherwith
the shootingmethod for the boundary valueODEs derived from the
maximum principle. This is different from how we use junctions.
Namely, we directly derive equations that govern the evolution of
junctions to achieve the optimal control requirements.

1 We assume that constraints can be handled efficiently through functions of
junctions.

Because MEJ is designed for separable problems, especially
for those whose optimal solutions and constraints can be dealt
efficiently through junctions, it has the ability to overcome some
well-known limitations of the aforementioned three methods.
Namely, the HJB approach, which gives the global solution, can be
computationally expensive and suffers from thenotorious problem
known as ‘‘curse of dimensionality’’. Indirect methods guarantee
to find local optimal solutions, while finding the global optimal
solutions, if possible, requires carefully designed initializations.
Direct methods often require finer discretization (smaller time
steps) if better accuracy is desired, which increases computational
demands. In recent years, various efforts have been devoted to
reduce the computational cost (Loxton et al., 2012, 2008, 2009).

We arrange this paper as follows. In Section 2, we explain the
idea of separability and give the algorithm for MEJ. In Section 3,
we use the newmethod to solve a robotic path-planning problem,
through which we demonstrate the advantages of MEJ.

2. Method of evolving junctions

To simplify our discussion, we introduce MEJ to (1) with
only state constraints. Its extension to control constraints is
straightforward and hence omitted here.

2.1. The separable structure

Definition 1. A path x(t) is said to be separable if there exists a
finite partition: t0 < t1 < t2 < · · · < tN < tN+1 = tf such
that x(t)|[ti,ti+1] alternates between segments where constraints
are either active or inactive. An optimal control problem (1) is
called separable if its optimal path is separable.

The notion of separability has been previously described in Speyer,
Mehra, and Bryson (1969) where only trajectories consisting of
three parts are considered (N = 2). Here we define x̃i := (ti, x(ti))
and call them junctions. A junction pair x̃i, x̃i+1 determines a trajec-
tory connecting them, which solves either the optimal control in
the free space or with active constraints, denoted by γ0(x̃i, x̃i+1) or
γc(x̃i, x̃i+1) respectively.

The separability allows us to restrict the search of optimal
trajectories in a subset H defined by

H := {γ : γ is determined by finite junctions}.

More precisely, if γ ∈ H , there exists a sequence of junctions on
the boundary of the constraints, (x̃0, . . . , x̃N , x̃N+1) such that γ can
be represented as

γ1(x̃0, x̃1) · γ2(x̃1, x̃2) . . . γN(x̃N , x̃N+1), (2)

where γi is either γ0 or γc , and γi · γi+1 denotes the concatenation
of two trajectories.

As a result, the cost functional of (1) can be expressed as a
function of junctions:

J(x̃1, . . . , x̃N+1) :=

N
i=1

Ji(x̃i, x̃i+1),

where Ji is the cost on γi, i.e.

Ji(x̃i, x̃i+1) := min
x,u

 ti+1

ti
L(x(t), u(t), t)dt.

Moreover, the optimal trajectory connecting x̃i and x̃i+1 must not
violate the constraints,

V (x̃i, x̃i+1) := min
ti≤t≤ti+1,1≤k≤p

φk(γi(t), t) = 0. (3)

For convenience, we call V (x̃i, x̃i+1) = 0 the visibility constraints.
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