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a b s t r a c t

Auxiliary function-based summation inequalities are addressed in this technical note. By constructing
appropriate auxiliary functions, several new summation inequalities are obtained. A novel sufficient
criterion for asymptotic stability of discrete-time systems with time-varying delay is obtained in terms
of linear matrix inequalities. The advantage of the proposed method is demonstrated by two classical
examples from the literature.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The stability of discrete-time systems with time-varying delay
has attracted much attention. Many stability criteria have been
derived for time-delay systems via different techniques (see Feng,
2002; Feng, Lam, &Yang, 2015; Kwon, Park, Ju, Lee, & Cha, 2013; Liu
& Zhang, 2012; Ramakrishnan & Ray, 2013; Zhang & Han, 2015a;
Zhang, Xu, & Zou, 2008). In order to estimate the bounds of terms
such as

 b
a xT (s)Px(s)ds (or

b
i=a x

T (i)Px(i)) which often occur in
the derivative (or the difference) of Lyapunov functionals, Jensen’s
inequality has been extensively used, since it is an appropriate tool
to derive tractable stability conditions expressed in terms of linear
matrix inequalities (LMIs).

In Seuret and Gouaisbaut (2013), an improved Jensen’s inequal-
ity called the Wirtinger-based integral inequality was proposed.
Park, Lee, and Lee (2015) proved an auxiliary function-based in-
tegral inequality which extended the Wirtinger-based integral in-
equality. Zhang andHan (2015b) established an Abel lemma-based
finite-sum inequality which can be regarded as a discrete counter-
part of theWirtinger-based integral inequality, and the stability of
linear discrete systems with constant delay was investigated.

Motivated by the ideas above, this paper establishes some new
auxiliary function-based summation inequalities which improve
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upon the Abel lemma-based finite-sum inequality. Unlike the ideas
in Park et al. (2015) and Zhang and Han (2015b), an orthogonal
group of sequences is chosen from an orthogonal system of
polynomials, which can be regarded as an orthogonal system of
continuous functions. Another orthogonal group of sequences is
chosen from another orthogonal system, which can be regarded
as an orthogonal system of discontinuous functions. Based on the
idea of approximation of a vector in these two orthogonal systems,
a new summation inequality is obtained. This new summation
inequality improves and extends the Abel lemma-based finite-sum
inequality and the discrete counterpart of the integral inequality in
Park et al. (2015). Moreover, as an application of these inequalities,
a new less conservative asymptotic stability criterion is provided
here for discrete-time systems with time-varying delay. Two
numerical examples are provided to illustrate the effectiveness of
the proposed method.

2. Main results

Theorem 1. Given an n × n positive definite matrix R > 0, any
sequence of a discrete-time variable y : [−h, 0] ∩ Z → Rn

and three sequences pi : [−h, 0] ∩ Z → R, i = 1, 2, 3
satisfying

0
k=−h+1 pi(k) = 0,

0
k=−h+1 p1(k)p2(k) = 0 and0

k=−h+1 p2(k)p3(k) = 0, the following inequality holds:

0
i=−h+1

y(i)TRy(i) ≥
1
h
ΘT

0 RΘ0 +

3
i=1

1
Pi

ΘT
i RΘi, (1)
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where Θ0 =
0

k=−h+1 y(k), Θ1 = F1, Θ2 = F2, Θ3 = F3 −

F1
P1

0
i=−h+1 p1(i)p3(i), Fj =

0
i=−h+1 y(i)pj(i), Pj =

0
i=−h+1 p

2
j (i),

j = 1, 2, 3.

Proof. Consider the following energy function

J(v) =

0
i=−h+1

z(i, v)TRz(i, v), (2)

where z(i, v) = y(i) −
1
hΘ0 −

p1(i)
P1

F1 −
p2(i)
P2

F2 − p3(i)v and v ∈ Rn.
Let ∇J(v̂) = 0, where ∇ is the gradient operator. Then v̂ =

F3
P3

−
F1

P1P3

0
i=−h+1 p1(i)p3(i). Since ∇

2J(v̂) = 2
0

i=−h+1 p
2
3(i)R >

0, then the Hessian matrix of J(v) at v = v̂ is positive definite.
Thus, the energy function J(v) reaches its minimum when v = v̂.
Furthermore,

J(v̂) =

0
i=−h+1

y(i)TRy(i) −
1
h
ΘT

0 RΘ0

−
1
P1

F T
1 RF 1 −

1
P2

F T
2 RF 2 − P3v̂TRv̂. (3)

The nonnegativity of J(v̂) implies

0
i=−h+1

y(i)TRy(i) ≥
1
h
ΘT

0 RΘ0 +
1
P1

F T
1 RF 1 +

1
P2

F T
2 RF 2

+ P3v̂TRv̂. (4)

Substituting v̂ into Inequality (4) yields Inequality (1). This com-
pletes the proof of Theorem 1.

If we choose the following sequences for pj(i) in Theorem 1

p1(i) = h − 1 + 2i, p2(i) = i2 + (h − 1)i +
(h − 1)(h − 2)

6
,

p3(i) =


−1, i = 0,
0, −h + 2 ≤ i ≤ −1,
1, i = −h + 1,

then
0

i=−h+1

pm(i) = 0, m = 1, 2, 3,

0
i=−h+1

p1(i)p2(i) =

0
i=−h+1

p2(i)p3(i) = 0,

0
i=−h+1

p1(i)p3(i) = −2(h − 1),

P1 =

0
i=−h+1

p21(i) =
(h − 1)h(h + 1)

3
,

P2 =

0
i=−h+1

p22(i) =
(h − 2)(h − 1)h(h + 1)(h + 2)

180
,

P3 =

0
i=−h+1

p23(i) = 2.

After some simple computations, one gets

0
i=−h+1

p1(i)y(i) = −(h + 1)


0

s=−h+1

y(s)

−
2

h + 1

0
k=−h+1

0
s=k

y(s)


, (5)

0
i=−h+1

p2(i)y(i) =
(h + 1)(h + 2)

6


0

i=−h+1

y(i)

−
6

h + 1

0
i=−h+1

0
k=i

y(k)

+
12

(h + 1)(h + 2)

0
i=−h+1

0
k=i

0
m=k

y(m)


, (6)

and

0
i=−h+1

p3(i)y(i) = −y(0) + y(−h + 1). (7)

By Theorem 1, one now gets the following corollary:

Corollary 1. Given a positive definite matrix R > 0, any sequence
of a discrete-time variable y : [−h, 0] ∩ Z → Rn, and any positive
integer h > 2, the following inequality holds:

0
i=−h+1

y(i)TRy(i) ≥
1
h
ΘT

0 RΘ0 +
3(h + 1)
h(h − 1)

ΩT
1 RΩ1

+
5(h + 1)(h + 2)
(h − 2)(h − 1)h

ΩT
2 RΩ2 +

1
2
ΩT

3 RΩ3, (8)

where Θ0 =
0

i=−h+1 y(i), Ω1 = Θ0 −
2

h+1

0
i=−h+1

0
j=i y(j),

Ω2 = Θ0 +
12

(h+1)(h+2)

0
i=−h+1

0
j=i

0
k=j y(k) −

6
h+1

0
i=−h+10

j=i y(j), Ω3 = y(−h + 1) − y(0) −
6
hΩ1.

Setting y(i) = △x(i) = x(i) − x(i − 1) in Corollary 1, we have

Corollary 2. Given a positive definite matrix R > 0, any sequence
of a discrete-time variable x : [−h, 0] ∩ Z → Rn, and any positive
integer h > 2, the following inequality holds:

0
i=−h+1

△x(i)TR△x(i) ≥
1
h
ΘT

△0RΘ△0 +
3(h + 1)
h(h − 1)

ΩT
△1RΩ△1

+
5(h + 1)(h + 2)
(h − 2)(h − 1)h

ΩT
△2RΩ△2

+
1
2
ΩT

△3RΩ△3, (9)

where Θ△0 = x(0) − x(−h), Ω△1 = x(0) + x(−h) −

2
h+1

0
k=−h x(k), Ω△2 = x(0) − x(−h) +

6h
(h+1)(h+2)

0
i=−h x(i) −

12
(h+1)(h+2)

0
i=−h+1

0
k=i x(k), Ω△3 = x(−h + 1) +

6−h
h x(−h) +

6−h
h x(0) + x(−1) −

12
h(h+1)

0
i=−h x(i).

Remark 1. In Park et al. (2015), p1(s) and p2(s) must be chosen
from an orthogonal system of continuous functions. In this
paper, a further function p3(s) is added, which can be chosen
from another orthogonal system of discontinuous functions. p3(s)
need not be orthogonal to p1(s). The complexity of computation
incurred by use of orthogonal polynomials with high degree is
avoided. The introduction of p3(s) leads to a sharper inequality.
Based on this idea for the discrete case, an orthogonal group of
sequences {1, p1(k), p2(k)} is chosen from an orthogonal system
of continuous functions. p3(k) is chosen from another orthogonal
system of functions, where p3(s) may be discontinuous. By
approximating vector y(i), a new summation inequality is obtained
in Theorem 1. If we choose appropriate sequences pi(k), i = 1, 2, 3
as in Corollary 2, then the Ω△i, i = 1, 2, 3 are very simple,
and suitable for stability analysis of discrete-time systems with
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