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a b s t r a c t

In this paper, a new technology or solution of quality-related fault diagnosis is provided for hot strip mill process
(HSMP). Different from traditional data-based fault diagnosis methods, the alternative approach is focused
more on root cause diagnosis. The new scheme addresses the quality-related fault detection with the developed
modified canonical variable analysis (MCVA) model, then the advantage of original generalized reconstruction
based contribution (GRBC) is followed to identify the faulty variables. Meanwhile, a new transfer entropy (TE)-
based causality analysis method is proposed for root cause diagnosis of quality-related faults. Finally, the whole
proposed framework is practiced with real HSMP data, and the results demonstrate the usage and effectiveness
of these approaches.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

To meet increasing market demands for multi-species, multi-
specifications as well as high-quality products, modern industrial pro-
cesses, such as HSMP, have become more and more complex and
integrated. Associated with this trend, once an abnormality occurs
somewhere in a plant, it may propagate to the whole HSMP or specific
control loops by means of information and/or material flow pathways
(Chioua et al., 2016; Choudhury, 2011; Yin, Liu, & Hou, 2016). The
presence of abnormality may impact the overall process performance
and the final products’ quality, such as the thickness, flatness, width
and so on. Thus, in order to maintain high-efficiency of the operation
and ensure stability of the product quality, real-time fault detection,
identification and accurate fault location are quite desired.

Traditionally, for most engineers, model-based methods act as basic
tools to design and carry out some monitoring activities (Aouaouda,
Chadli, Shi, & Karimi, 2015; Chibani, Chadli, Shi, & Braiek, 2016; Ding,
2013; Dong, Wang, & Gao, 2013; Gertler, 1998; He, Wang, Ji, & Zhou,
2011; Isermann, 2006; Li, Chadli, Ding, Qiu, & Yang, 2017; Yin, Zhu,
Qiu, & Gao, 2016; Youssef, Chadli, Karimi, & Wang, 2017). Whereas, like
HSMP, from a physical standpoint, the deformation of the thickness can
be affected by the rolling force, the temperature, bending force and other
physical properties that depend on the specific steel type. Therefore, to
some extent, it is difficult to construct a precise model for HSMP, which
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results in the model-based methods cannot perform well and become
invalid. In comparison, data-based methods, thanks to their simple
forms and fewer requirements on the design and engineering efforts,
have become more and more popular both in industry and academia
domains nowadays (Ge, Song, & Gao, 2013; Kano & Nakagawa, 2008;
Qin, 2003, 2012; Tidriri, Chatti, Verron, & Tiplica, 2016; Yin, Ding, Xie,
& Luo, 2014; Yin, Li, Gao, & Kaynak, 2015; Yin, Wang, & Hao, 2016).

In actual HSMP, collected variables can be divided into process
variables and quality variables in general. For process variables, such as
gap, rolling force or bending force, can be measured online. However,
measurements of quality variables like thickness or flatness should be
realized after the production process is over. In practice, not all of
the faults in process variables will influence the products’ quality, and
some may change the surrounding environment. Hence, identifying the
covariances or correlations model between process variables and quality
variables so as to monitor quality-related faults is very important in the
industrial processes. For such a purpose, projection to latent structures
(PLS)-based modeling methods have been significantly well-known in
the quality-related fault detection for HSMP (Ding, Yin, Peng, Hao,
& Shen, 2013; Peng, Zhang, Li, & Zhou, 2013; Peng, Zhang, You, &
Dong, 2015a, b; Zhang, Hao, Chen, Ding, & Peng, 2015). However,
several singular value decompositions (SVDs) are involved behind those
algorithms while processing very large-scale industrial data. Canonical
variable analysis (CVA), in contrast, is more efficient than PLS-based
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methods, because it only needs one-step SVD (Hardoon, Szedmak, &
Shawe-Taylor, 2004; Peng, Zhang, Dong, & Yang, 2014). Therefore,
many pioneers have used CVA-based methods for fault detection in the
past few years (Chen, Ding, Zhang, Li, & Hu, 2016; Chiang, Russell, &
Braatz, 2000; Ding, 2014; Juricek, Seborg, & Larimore, 2004; Odiowei &
Cao, 2009), which have largely improved monitoring performance for
dynamic processes characterized by strong auto-correlated and cross-
correlated variables.

Once a fault is alerted, all the above methods are capable of
generating contribution plots to identify the major fault effect vari-
ables efficiently without prior process knowledge (MacGregor, Jaeckle,
Kiparissides, & Koutoudi, 1994). Nevertheless, the root cause of faults
cannot be located exactly, because these approaches are based on
correlation other than causality among faulty variables (Li, Qin, &
Yuan, 2016). As a result, some reasonable root cause diagnosis methods
by capturing causality among different process variables have been
developed in recent years.

Roughly speaking, the causality capture methods can be divided into
two general groups: knowledge-based and data-based. Knowledge-based
approaches are based on connectivity or causality that use operation
mechanism, piping & instrument diagram (P&ID), process flow diagram
(PFD) or expert knowledge (Duan, Chen, Shah, & Yang, 2014). A draw-
back is that these methods cannot provide any information on the level
of interactions among variables (Yang, Duan, Shah, & Chen, 2014). By
contrast, the data-based approaches are able to produce a quantitative
model due to their abilities to measure to what extent the time series
corresponding to specific variables influence each other, which have
been widely used for investigating the causal interactions among process
variables in the form of time series (Landman, Kortela, Sun, & Jömsö-
Jounela, 2014). Among these data-based methods, cross-correlation
function (CCF) (Bauer & Thornhill, 2008) and Granger causality (GC)
(Landman et al., 2014; Yuan & Qin, 2014) are classical means. CCF
is practical to be estimated from two time series and its results are
arranged in a causality matrix, the GC method can identify the cause–
effect relationship among process variables and capture the root cause
of the plant oscillations that degrades the prediction performance, while
it cannot explain whether the calculated GC comes from abnormal oper-
ations or not (Mori, Mahalec, & Yu, 2014). Alternatively, TE is utilized
to quantify the size and direction of information flow for both linear
and nonlinear relationships without any process knowledge, which has
been successfully applied to various applications for estimating causal
dependencies between time series (Bauer, Cox, Caveness, & Downs,
2007; Duan et al., 2014; Landman & Jömsö-Jounela, 2016; Lee et al.,
2012; Schreiber, 2000; Yu & Yang, 2015). Nevertheless, the calculation
of TE index may be a heavy burden if the number of sample is very large
or the network topology is very complex. So adopting a suitable fault
identification tool in advance to reduce the number of faulty variables
as much as possible is a good choice.

Motivated by those observations, considering the logic and integrity
of quality-related fault diagnosis, we will address three topics in this
work: (1) developing a new MCVA-based quality-related fault detection
method, and (2) presenting a GRBC-based quality-related fault identi-
fication method, and (3) proposing a TE-based method for root cause
diagnosis of quality-related faults. Our major goal is to provide a high-
efficiency tool to root cause diagnosis of quality-related faults for HSMP
by combining process monitoring and causality analysis methods.

The rest of this paper is organized as follows. In Section 2, a novel
MCVA-based quality-related fault detection approach is presented. After
that, Section 3 is dedicated to the root cause diagnosis of quality-related
faults. Then, the proposed scheme is implemented on the real HSMP in
Section 4. In the end, the concluding remarks are presented in Section 5.

2. MCVA-based quality-related fault detection for dynamic pro-
cesses

2.1. Conventional CVA statistical method

CVA is a classical dimensionality reduction tool that is optimal in
terms of maximizing a correlation statistic between two or even more

data sets. Suppose that the dynamic relationships between process vari-
ables and quality variables under consideration are modeled as a linear
time-invariant (LTI) and with white process as well as measurement
noise, it can be described by

𝐱(𝑘 + 1) = 𝐀𝐱(𝑘) + 𝐁𝐮(𝑘) + 𝐰(𝑘) (1)

𝐲(𝑘) = 𝐂𝐱(𝑘) + 𝐃𝐮(𝑘) + 𝐯(𝑘) (2)

where 𝐱 ∈ 𝑛 represents a state vector, 𝐮 ∈ 𝑙 and 𝐲 ∈ 𝑚 are
process variables and quality variables vectors, and 𝐰 ∈ 𝑛 and 𝐯 ∈ 𝑚

are zero-mean, Gaussian distributed white noises which are statistically
independent of process variables. The system matrices 𝐀, 𝐁, 𝐂 and 𝐃
are unknown constant matrices with appropriate dimensions.

Based on the above model (1) and (2), the dependence of the past
vector 𝐩 and the future vector 𝐟 is investigated, which are traditionally
defined as follows:

𝐩𝑘 = [𝐲T𝑘−1,… , 𝐲T𝑘−𝑙′ ,𝐮
T
𝑘−1,… ,𝐮T𝑘−𝑙′ ]

T (3)

𝐟𝑘 = [𝐲T𝑘 , 𝐲
T
𝑘+1,… , 𝐲T𝑘+𝑓 ′ ]T (4)

where 𝑙′ and 𝑓 ′ are the numbers of lags. In general, 𝑙′ = 𝑓 ′ is
predefined, and the process order 𝑛 is determined by Akaike information
criterion (AIC) or cross-validation procedures, and selection based on
the eigenvalues of the Hankel matrix (Ding, 2014; Larimore, 1996;
Odiowei & Cao, 2009).

CVA seeks to find linear combinations of the future observations that
correlate the most with the past observations, this correlation can be
expressed as:

𝜌𝐽 ,𝐿 =
𝐉T𝚺𝑝𝑓𝐋

√

𝐉T𝚺𝑝𝑝𝐉
√

𝐋T𝚺𝑓𝑓𝐋
(5)

where 𝐉 and 𝐋 are transformation matrices, 𝚺𝑝𝑝 = E(𝐩T𝐩), 𝚺𝑓𝑓 = E(𝐟T𝐟 )
and 𝚺𝑝𝑓 = E(𝐩T𝐟 ).

This is equivalent to the following optimization problem:

max
𝐽 ,𝐿

= 𝐉T𝚺𝑝𝑓𝐋 + 𝜆𝑝(𝐈𝑝 − 𝐉T𝚺𝑝𝑝𝐉) + 𝜆𝑓 (𝐈𝑓 − 𝐋T𝚺𝑓𝑓𝐋) (6)

where 𝐈𝑝 and 𝐈𝑓 are identity matrices of appropriate dimensions, 𝜆𝑝 and
𝜆𝑓 are Lagrangian multipliers. The solution is given by SVD:

𝚺−1∕2
𝑝𝑝 𝚺𝑝𝑓𝚺

−1∕2
𝑓𝑓 = �̂�𝚺�̂�T (7)

where 𝐉 = 𝚺−1∕2
𝑝𝑝 �̂�, 𝐋 = 𝚺−1∕2

𝑓𝑓 �̂�, and the main diagonal elements of 𝚺
contains the correlation coefficients.

2.2. MCVA-based quality-related fault detection method

In this paper, for our application, inspired by DPCA- and DPLS- based
methods (Ku, Storer, & Georgakis, 1995; Zhang, Shardt, Chen, Ding,
& Peng, 2015), we extend the conventional CVA-based multivariate
statistical method to address quality-related fault detection issues in
stable and dynamic processes.

In order to maximize a more general measure of dependency and
describe the correlation structure between variables completely, the
Pearson’s correlation coefficient in Eq. (5) will be replaced by mutual
information (Yin, 2004). Then, the mutual information between 𝐉T𝐩 and
𝐋T𝐟 holds:

𝐌(𝐉,𝐋) = E
[

log
𝑝(𝐉T𝐩,𝐋T𝐟 )
𝑝(𝐉T𝐩)𝑝(𝐋T𝐟 )

]

(8)

where 𝑝(⋅, ⋅) and 𝑝(⋅) are the joint probability density function and the
marginal density function, respectively.

We find 𝐉𝑖 and 𝐋𝑖, where 𝑖 ≤ min(𝑙, 𝑚) such that

𝐌𝑖 = 𝐌(𝐉𝑖,𝐋𝑖) = max𝐌(𝐉,𝐋) (9)
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