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a b s t r a c t

This paper proposes a novel adaptive backstepping control for a special class of nonlinear systems with both
matched and mismatched unknown parameters. The parameter update laws resemble a nonlinear reduced-
order disturbance observer. Thus, the convergence of the estimated parameter values to the true ones is
guaranteed. In each recursive design step, only single parameter update law is required in comparison to the
existing standard adaptive backstepping techniques based on overparametrization and tuning functions. To
make a fair comparison with the overparametrization and tuning function methods, a second-order non-
linear engine cooling system is taken as a benchmark problem. This system is subject to both matched and
mismatched state-dependent lumped disturbances. Moreover, the proposed model-based controllers are
compared with a classical PI control by using performance metrics, i.e., root-mean-square error and control
effort. The comparative analysis based on these performance metrics, simulations as well as experiments
highlights the effectiveness of the proposed novel adaptive backstepping control in terms of asymptotic
tracking, global stability and guaranteed parameter convergence.

& 2017 Published by Elsevier Ltd.

1. Introduction

Backstepping is one of the most popular design methods that not
only guarantees global stability but also excellent tracking perfor-
mance for a broad class of strict-feedback systems. This is achieved by
defining a Lyapunov function at each design step in a recursive fash-
ion, cf. Isidori (1995), Krstic, Kanellakopoulos, and Kokotovic (1995),
Khalil (2002), Zhou and Wen (2008), Ioannou (2006). Backstepping
control offers the advantage to design control laws for the system
under the influence of mismatched uncertainties too. In adaptive
backstepping control, the underlying idea is to design a dynamic part
of the feedback that serves primarily as a parameter update law with
which the static part is continuously updated, see Isidori (1995), Krstic
et al. (1995), Khalil (2002), Zhou and Wen (2008), Ioannou (2006),
Aschemann and Schindele (2014), Zhou and Wang (2005). A perfect
tracking behavior and robustness can be addressed with the inclusion
of unknown parameters and lumped disturbances in the control law.
These lumped disturbances include parameter uncertainty, modeling
errors and other immeasurable effects. In observer-based control, a
disturbance observer is employed to estimate external disturbances.

Examples in different control applications, where a disturbance ob-
server estimates external disturbances, can be found in the works of
Kim (2002), Chen, Ballance, Gawthrop, and O'Reilly (2000), Huang and
Messner (1998), Chen (2003). For a strict feedback nonlinear system,
an adaptive neural network control, adaptive fuzzy backstepping
control and disturbance observer based RBF neural network using
backstepping design are proposed in Zhang, Ge, and Hang (2000), Hou
and Fei (2015) and Rong, QingXian, and ChangSheng (2010), respec-
tively. Likewise, in Ge and Wang (2003), the robust adaptive back-
stepping tracking for time-varying uncertain nonlinear systems is in-
vestigated using unknown control coefficients. For matched dis-
turbances, a control design based on adaptive backstepping control
has attracted ever increasing interest, cf. Aschemann and Schindele
(2014), Huang and Ching (2009), Uddin and Nam (2009), Morishita
and Souza (2014). Nonetheless, systems with mismatched lumped
disturbances are commonly encountered in everyday life. For example,
immeasurable drift in the velocity component of helicopters, cf. Yue,
Hai, Hong, and Tai (2013), crane systems, see Vázquez, Fridman, Col-
lado, and Castillo (2015), and immeasurable state-dependent as well
as ambient temperature dependent heat transfers into and out of the
engine cooling system, see Aschemann et al. (2011), Butt et al. (2015),
Wang and Wagner (2015).

One of the biggest advantage of an adaptive backstepping control
is guaranteed asymptotic stability in spite of the speed of
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convergence of estimated lumped disturbances to their true values.
However, the question of speed of convergence of the unknown
parameters as well as the lumped disturbances to their true values is
always a concern, cf. Lin and Kanellakopoulos (1999). Usually para-
meter update laws are governed by the error dynamics only, which
could either lead to slow convergence or it may lead to non-physical
values of the parameters when the input signal is not sufficiently
excited, cf. Lin and Kanellakopoulos (1999), Slotine and Li (1991).
Although the control aim is achieved, the estimated values of the
unknown parameters may lead to a misinterpretation of the influ-
ence of parameters on the overall system behavior. Therefore, in this
paper the choice of the parameter update laws for unknownmatched
and mismatched parameters are addressed. The parameter update
laws are similar to a nonlinear reduced-order disturbance observer
and allow to estimate both the matched and mismatched parameters
with an excellent accuracy.

Although an observer-like parameter update law is proposed in
Yue et al. (2013) for a helicopter system, the parameter update law
for both the matched as well as mismatched lumped disturbances
is designed in the last step of the adaptive backstepping control.
Furthermore, no systematic procedure related to the asymptotic
convergence of the closed-loop dynamics is addressed therein. In
this work, on the contrary, the parameter update law is proposed
at the first occurrence of the unknown parameter in each design
step and the closed-loop stability is thoroughly analyzed.

This paper is structured as follows: In Section 2, a novel
adaptive backstepping control is presented for a special class of
nonlinear systems under the influence of both matched and mis-
matched unknown parameters. In Section 3, the approach is ap-
plied to an engine cooling system as a benchmark problem. In an
engine cooling system, the parameter uncertainties appear in the
form of state-dependent lumped disturbances. To make a fair
comparison, the performance of the proposed adaptive back-
stepping control in terms of trajectory tracking and parameter
convergence is compared with the standard overparametrization,
tuning function methods and a classical PI-controller. Further-
more, the simulation analysis and experimental results on a
dedicated test-rig are presented as well. Finally, conclusions are
drawn in Section 4.

2. Adaptive backstepping control

In this paper, a new design approach is presented for nonlinear
systems transformable into the following form
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1 denotes the state vector of the non-
linear system, ∈ u is the control input, and (·) ∈ fi and (·) ∈ g
are smooth nonlinear functions. Furthermore, the nonlinear
functions Φ (·)( ≤ ≤ )i n1i are assumed to be continuously differ-
entiable and unequal to zero. The parameter θ ( ≤ ≤ )i n1i is un-
known, and θ <i n,i and θn represent mismatched parameter
uncertainties as well as a matched parameter uncertainty, re-
spectively. To proceed with the design of the novel adaptive
backstepping control, the following assumptions are introduced:

Assumption 1. All states xi(t) of the nonlinear system (1) are
measurable.

Assumption 2. The nonlinear functions Φ ( )xi i and ( )xg are known
and not equal to zero for any x(t).

To illustrate the idea of the novel adaptive backstepping, the
analysis is confined to a second-order system under the influence

of both mismatched θ1 and matched θ2 parametric uncertainties
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2 is a constant unknown vector and

Φ (·) ∈ i are known continuously differentiable nonlinear func-
tions. As the novel approach involves parameter update laws si-
milar to a nonlinear reduced-order disturbance observer, in-
tegrator disturbance models are introduced for θ1 and θ2

θ θ̇ = ̇ = ( )0, and 0. 31 2

Note that these disturbance variables are affected within the
parameter update laws by the tracking errors. In the following, the
adaptive backstepping design procedure for the system (2) is
elaborated.

Step-1:The tracking error e1 and its corresponding first time
derivative are defined as follows
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where xd denotes the desired trajectory. Since the mismatched
parameter θ1 is unknown, a quadratic control Lyapunov function
can be chosen as
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with θ θ θ˜ = − ^
1 1 1. Here, θ̂1 represents the estimated value of the

parameter θ1. Furthermore, a strictly positive adaptation gain is
denoted by γ1. The corresponding first time derivative of V1 be-
comes
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According to the standard backstepping control procedure, a vir-
tual control input x2d, an error function e2 and a time derivative of
the parameter θ̃1 are introduced, i.e.,
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Here, the virtual control input x2d comprises a stabilizing function
α and the first time derivative of the desired trajectory. Substitu-
tion of (2) and (7) in (6) results in
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With the following choice of the stabilizing function α and the

parameter update law θ̂
̇

1
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the time derivative of the Lyapunov function becomes
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Herein, e e1 2 will be eliminated in the next step of the design pro-
cedure. After this elimination, the time derivative of the Lyapunov
function turns out to be
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