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A B S T R A C T

Process nonlinearity and state shifting are two of the main factors that cause poor performance of online soft
sensors. Adaptive soft sensor is a common practice to ensure high predictive accuracy. In this paper, the moving
window method is introduced to the supervised latent factor analysis model to capture the state shifting feature
of the process. To make the moving window strategy more efficient, the weighted form of the supervised latent
factor analysis approach is applied. In this method, contributions of training samples are expressed through
incorporating the similarity index into the noise variance of the process variable, which renders strong
adaptability of the method for describing nonlinear relationships and abrupt changes of the process. A
numerical example and a real industrial process are provided to demonstrate the effectiveness of the proposed
adaptive soft sensor.

1. Introduction

As the modern plants become more and more complicated, large
amounts of process data are stored in the database through field
instruments (Kano & Nakagawa, 2008). The large scale data contains a
lot of information about the process, which can be utilized for process
monitoring, control, optimization, etc. (Kadlec, Gabrys, & Strandt,
2009; Khatibisepehr, Huang, & Khare, 2013; Zhang, Fan, & Du,
2015). Data-driven soft sensor is a significant application of the data
analysis technique, which is built to estimate the values of difficult-to-
measure variables by using values of easy-to-measure variables.
Compared to traditional first principle modeling methods which
typically synthesized prior knowledge or experiences, data-driven soft
sensors are more flexible and can be easily deployed in real industrial
plants (Kaneko & Funatsu, 2014a; Zhou, Lu, & Chai, 2014).

Generally, principal component regression (PCR) (Barshan,
Ghodsi, & Azimifar, 2011; Yuan, Ge, & Song, 2014) and partial least
squares (PLS) (Janik, Skjemstad, & Shepherd, 2007; Qin, 1998) are
two of the most widely used linear methods for data-driven soft sensor
modeling as they are simply constructed and easy to implement.
Besides, the nonlinear modeling methods like artificial neural network
(ANN) (Hoskins & Himmelblau, 1988; Tu, 1996) and support vector
machine (SVM) (Kaneko & Funatsu, 2014b; Yu, 2012a) are also
popular for soft sensing of nonlinear processes. In recent years, the
probabilistic modeling methods have become a tendency. Among the

numerous probabilistic methods, the probabilistic principal component
regression (PPCR) is the most widely used method, which preferably
gives the prediction results in a probabilistic manner (Ge, Gao, &
Song, 2011; Lawrence, 2005). However, the traditional PPCR method
assumes that the process variables varies in a homogeneous noise level.
To relax this limitation, the latent factor analysis (LFA) model has been
artfully extended to the supervised form and used for soft sensing with
full labeled data, which takes different noise levels of process variables
into account (Ge, 2015).

However, in real industrial plants, the process state often varies in
different levels according to the different manufacture conditions
(Grbić, Slišković, & Kadlec, 2013; Kaneko & Funatsu, 2014c;
Khatibisepehr, Huang, & Xu, 2012; Zhang & Li, 2013). Generally,
model degradation is one of the critical problems that traditional soft
sensors have to face, which can lead to a deterioration in prediction
performance (Kadlec, Grbić, & Gabrys, 2011; Kaneko & Funatsu,
2013). This often occurs after a state shifting in a plant, such as
changes in raw materials, catalyst performance deterioration, fouling
on pipes, and equipment degradation. However, conventional soft
sensor is generally developed on a steady process state, the model
only learns information of one mode. Even if the model is developed
successfully, its performance deteriorates when process state shifts,
since the model lacks information of the new state. Such a situation
would affect the evaluation of the product quality, and if an incident is
not detected in-time, the safety of plant would not be ensured. In some
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way, the degradation of model limits the practical use of soft sensors in
chemical industrial processes (Yu, 2012b; Yu, Chen, & Rashid, 2013).

In order to solve this problem, adaptive soft sensors have been
proposed by using new measurement data. Typical adaptive soft
sensors are constructed based on methods such as the just-in-time
(JIT) (Fujiwara, Kano, Hasebe, & Takinami, 2009; Jin, Chen, & Yang,
2014; Liu & Chen, 2013), time difference (TD) (Kaneko & Funatsu,
2011a, 2011b) and moving window (MW) (Du, Liang, & Jiang, 2004;
Liu, Chen, & Shen, 2010) approaches. The JIT models have been
widely utilized in soft sensor modeling, which are constructed with
selected training samples. It means that training samples similar to the
query sample are selected to build the local predictive model (Ge &
Song, 2010; Yao & Ge, 2017). JIT method needs a selected dataset
from the database of Distributed Control System (DCS) which contains
information of the whole process. Generally, the selected dataset is very
large and searching for similar samples from it is always time
consuming. The TD model could take effect when the drifts and
gradual changes in the state of a plant without reconstruction of the
model. Generally, soft sensor models are regarded as a mathematic
functions, whose input variables and output variable are commonly
defined as the x-variables and y-variable, respectively. In TD-based soft
sensor models, the differential of x-variables is taken as the input of the
model to estimate the difference of y-variable, and the difference is
added to the predicted value of y-variable. The shifting value of y-
variable can be taken as a bias and eliminated while generating the
output of the model (Kaneko & Funatsu, 2011c). Nevertheless, if the
relationship between x-variables and the y-variable is changed, TD
method cannot adapt to the value variation any more. For MWmethod,
the dataset in the window is updated through incorporating the newly
measured samples and discarding the oldest samples. In most cases,
the dataset selected in the window as these are assumed to be the most
relevant to the current process character. Every time the window
updates, the latest information of the process is obtained, on which the
model built can effectively describe the current state even the process
starts to shift gradually (Ni, Tan, & Ng, 2012). Comparing with the
whole-dataset modeling method, learning model parameters with a
short-fixed dataset can greatly cut down the modeling time.
Nevertheless, it is difficult for MW model to handle strong nonlinear
process with a rapid or instant change because the model is affected by
old data before the change. Aiming at this problem, a weighted method
is proposed in this paper as the basic modeling approach to reduce the
influence of abruption.

In this paper, an adaptive soft sensor based on supervised latent
factor analysis (SLFA) method is proposed for the state shifting
process. Two datasets should be declared before describing the
modeling method: the training samples and the query sample. The
training samples contain both process variables and quality variable,
which are utilized to train a regression model. In the regression model,
the process variables are taken as the inputs and the quality variable is
the output. However, the query sample is merely composed by process
variables and its quality variable value is needed to be estimated by the
regression model. After a period of time, the real value of the query
sample can be obtained from the laboratory analysis. At the beginning
of the approach, the basic SLFA model is trained by the original
training samples collected from the database. While there is a query
sample comes, the value of quality variable can be predicted by the
trained model. To introduce the latest process information into the soft
sensor model without increasing the computation burden, the moving
window method is utilized to update the training samples through
adding the newly acquired samples and removing the oldest samples.
The model trained by the updated training samples is called the local
model which completely represents the current process state. As the
window slides, the local model is updated constantly, which renders the
soft sensor a strong adaptability to the state shifting of the process.
Therefore, through composing a set of local linear models, a nonlinear
process can be approximately described. To further increase the

prediction accuracy of the soft sensor, the similarities between the
training samples and the query sample are considered while building
the local model. Empirically, training data samples have different levels
of similarity to the query sample, thus the weights are assigned
differently to the training samples. Through adding the weighted
method, the prediction accuracy of the moving window based SLFA
model can be greatly improved. Unlike the JIT method, this kind of
similarity calculating method is conducted in a window, which greatly
reduces the computation time of searching samples in a huge database.

The layout of this paper is given as follows. In Section 2, the
supervised latent factor analysis (SLFA) model is briefly introduced.
Then, the moving window based weighted supervised latent factor
analysis (MW-WSLFA) method is proposed and the detailed descrip-
tion of parameter identification under the probabilistic framework is
presented in Section 3. Next to that, the adaptive soft sensor is
constructed based on MW-WSLFA. Two case studies are utilized for
performance evaluation in Section 5. Finally, conclusions are made.

2. Supervised latent factor analysis

The supervised latent factor analysis (SLFA) model is established
under a probabilistic framework, which tries to build a relationship
between full labeled input and output dataset (Ge, 2015). The input
and output datasets are defined as RX x x x= [ , , ... , ] ∈n

m n
1 2

× and
RY y y y= [ , , ... , ] ∈n

r n
1 2

× , respectively, where m is the variable number
of input dataset X,r is the variable number of output dataset Y, and n is
the sample number of each variable. The SLFA model structure can be
expressed as follows

X Pt e= + (1)

Y Ct f= + (2)

where RP ∈ m k× , RC ∈ r k× are factor loading matrices of dataset X and
Y, respectively. A common variable Rt ∈ k n× called latent factor is
introduced to interpret the relationship between input and output
variables, where k is the number of latent factors. For SLFA model, the
variances of measured noise e are different for sampled variables,
which are represented by diag σΣ = { }q q m

2
=1,2,..., . Specially, if all σq

2 equal
the same value, the SLFA model is equivalent to probabilistic principal
component regression (PPCR) model.

In SLFA model, the probability distribution of the latent factor and
the measured noise are Gaussian. Then p Nt I( ) = (0, ), p Ne Σ( ) = (0, )x
and p Nf Σ( ) = (0, ),y where diag σΣ = { }q q mx x,

2
=1,2,..., and

diag σΣ = { }q q my y,
2

=1,2,..., . For measured variables, the marginal prob-
ability p x y( , ) can be formulated as follows

∫
∫
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x t P Σ y t C Σ t t
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where the variables x and y are conditionally independent given the
latent factor. Based on the noise probability function, the conditional
probability of x and y can be calculated as p Nx t P Σ Pt Σ( | , , ) = ( , )x x and
p y t C Σ( | , , ) =y N Ct Σ( , )y , respectively. For the measured dataset X
and Y, the parameter set of latent factor analysis model
Θ P C Σ Σ={ , , , }x y is commonly identified through an efficient EM
algorithm.

In the E-step of the EM algorithm, the posterior probability of the
latent factor is determined based on the parameters Θs obtained in the
previous M-step. According to the Bayes’ rule, the posterior probability
of the latent factor can be calculated as follows:

p p p pt x y Θ x t P Σ y t C Σ t( | , , ) = ( | , , ) ( | , , ) ( )s
x y (4)

Since the terms on the right side of Eq. (4) are Gaussian distributed,
the posterior probability of the latent factor is also Gaussian, and the
sufficient statistics can be calculated as follows:
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