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A B S T R A C T

This contribution deals with the flatness based control of a gantry crane, where the control objective is to
transfer the load from an initial rest position to a final rest position in a minimal transition time. It is well-
known that the type of crane model we consider is a differentially flat system, and that the position of the load is
a flat output. We exploit this property both for the design of a tracking control as well as for planning time-
optimal reference trajectories for the load. We discuss the design of the tracking control in detail, and show in
particular how a standard approach which can be found in the literature can be modified systematically such
that instead of measurements of certain time derivatives of the flat output we can use measurements of the state
of the system. We also present a new approach for the design of time-optimal reference trajectories. In order to
solve the resulting nonlinear optimization problem numerically, we use a primal-dual interior point method.
Finally, we conclude with measurement results that stem from an implementation on a laboratory model.

1. Introduction

This paper addresses the flatness based control of a gantry crane
which can manipulate a load in a vertical plane. The control objective
we consider is to transfer the load between rest positions in a time-
optimal way. It is known since about 20 years that this type of crane
model is a differentially flat system, with the position of the load as a
flat output, see e.g. Fliess, Lévine, Martin, and Rouchon (1995). This
property is beneficial both for the design of a tracking control as well as
for planning time-optimal reference trajectories for the load. After the
mathematical modelling in Section 2, in Section 3 we extensively
discuss the design of a flatness based tracking control. We recall two
standard methods for the design of flatness based tracking controls,
where the first one is based on a dynamic extension of the system (see
e.g. Fliess, Lévine, Martin, & Rouchon, 1999) and the second one is
based on a quasi-static state feedback (see e.g. Delaleau & Rudolph,
1998). The second method has the advantage that it results in a static
control law, but it requires measurements or estimates of certain time
derivatives of the flat output. We show that, under certain conditions,
this method can be modified systematically such that instead of these
time derivatives we can use measurements or estimates of the state of
the system, and we demonstrate this for the gantry crane. In Section 4
we present a new approach for the design of time-optimal reference
trajectories. In order to solve the resulting nonlinear optimization
problem numerically, we use a primal-dual interior point method
(IPOPT, see Wächter & Biegler, 2006). For the calculation of the
Jacobian matrices which are needed by the solver, we use, amongst

others, an implementation based on auto-differentiation (ADOL-C, see
Walther & Griewank, 2012). In Section 5 we finally show measure-
ment results from an implementation of our control law on a laboratory
model of the gantry crane. Preliminary results of the present work can
be found in Kolar and Schlacher (2013).

2. Mathematical modelling

The laboratory model of the gantry crane is shown in Fig. 1. The
trolley, which carries a hoist for lifting or lowering the load, is moved
by a cable on a rail. The cable is driven by a second hoist, which can be
seen in the center of Fig. 1. Both hoists are actuated by gear motors. As
long as no external disturbances act on the load, it only moves in a
vertical plane, and so we face a planar problem. The mathematical
modelling of the gantry crane is based on the schematic diagram shown
in Fig. 2. For the modelling we assume that the rope that carries the
load is always stretched, which allows us to model the rope with the
load as a pendulum (of variable length). Of course, this assumption
only holds as long as the vertical acceleration of the load is smaller than
the gravitational acceleration. The position of the trolley is denoted by
xT , the rotation angle of the rope drum is denoted by φ, and θ describes
the pendulum angle. With the radius R of the rope drum, the length of
the pendulum is l Rφ= , and the position of the load is given by
x x Rφ θ= − sin( )L T and y Rφ θ= cos( )L . The parametermT describes the
mass of the trolley, and J represents the moment of inertia of the rope
drum. The load has the mass mL, and the gravitational acceleration g
points in the positive y-direction. The driving force F which acts on the
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trolley and the driving torque M which acts on the rope drum are the
control inputs.

Because of the assumption that the rope is always stretched, we can
consider the gantry crane as a rigid multi-body system with holonomic
constraints. Therefore, the equations of motion can be derived from the
Euler-Lagrange equations

t
T T V Qd

d
(∂ ) − ∂ + ∂ =q q q˙ (1)

(see e.g. Spong & Vidyasagar, 1989), where T and V are the kinetic and
the potential energy of the system, and Q denotes the generalized
forces. By q and q̇ we denote the generalized coordinates resp. the
generalized velocities. With the generalized coordinates q x φ θ= ( , , )T ,
the system's kinetic energy is given by
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where

x x Rφ θ Rφθ θ y Rφ θ Rφθ θ̇ = ̇ − ̇ sin( ) − ̇ cos( ) ̇ = ̇ cos( ) − ̇ sin( )L T L

are the horizontal and the vertical velocity of the load. Note that (2)
consists of a term which is due to the translatory motion of the trolley,
a term which is due to the rotation of the rope drum, and the kinetic
energy of the load. The potential energy of the system is given by
V m gRφ θ= − cos( )L , and the driving force F and the driving torque M
result in the generalized forces Q F M= ( , , 0). Evaluating (1) results in
the equations of motion
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A state representation x f x u˙ = ( , ) is given by

x v φ ω θ ω v f φ θ ω F M ω f φ θ ω F M ω
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with the state x q q x φ θ v ω ω= ( , ˙) = ( , , , , , )T T φ θ and the input
u F M= ( , ).

3. Flatness based tracking control

For completeness, let us recall that an m-tuple y φ x u u u= ( , , ˙,…, )q( )

is a flat output of a system

x f x u˙ = ( , ) (4)

if there exist submersions Fx and Fu and a multi-index r r r= ( ,…, )m1
such that locally

x F y y y u F y y y= ( , ,̇…, ) = ( , ,̇…, )x
r

u
r( −1) ( ) (5)

holds, i.e. x and u can be expressed as functions of the flat output and
its time derivatives. This guarantees that the time derivatives of the flat
output up to arbitrary order are functionally independent, and conse-
quently (locally) all sufficiently often differentiable trajectories y(t)
satisfy the system equations (4). Throughout this paper we will often
employ the following notation, which allows to describe in a compact
way on which time derivatives of a flat output y y y= ( ,…, )m1 (or some
other m-tuple of system variables) some function depends. With the
multi-indices a a a= ( ,…, )m1 and b b b= ( ,…, )m1 , where aj and bj are
non-negative integers with a b≤j j, we use the abbreviation

y y y= ( ,…, )a b a b
m
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with y y y= ( ,…, )j
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j
a

j
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m
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we have already used above. We also employ the usual conventions
b a b a b a± = ( ± ,…, ± )m m1 1 and a a# = ∑ j

m
j=1 for multi-indices. The

map (5) can then be written in the compact form

x F y u F y= ( ) = ( ).x
r

u
r[0, −1] [0, ] (6)

Now it is well-known that the gantry crane is a flat system and that
the position of the load is a flat output (see e.g. Fliess et al., 1995).
Since x x Rφ θ= − sin( )L T and y Rφ θ= cos( )L only depend on the con-
figuration variables x φ θ( , , )T , the flat output y x y= ( , )L L is called a
configuration-flat output and the system is configuration-flat, see
Rathinam and Murray (1998) and Sato and Iwai (2012). However,
we want to mention that the gantry crane is not static feedback
linearizable (this can be checked by the conditions derived in

Fig. 1. Laboratory model of the gantry crane.

Fig. 2. Schematic diagram of the gantry crane.
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