
Contents lists available at ScienceDirect

Control Engineering Practice

journal homepage: www.elsevier.com/locate/conengprac

Efficient hardware implementation of radial basis function neural network
with customized-precision floating-point operations

Helon Vicente Hultmann Ayalaa,⁎, Daniel M. Muñozb, Carlos H. Llanosc, Leandro dos
Santos Coelhoa,d

a Industrial and Systems Engineering Graduate Program, Pontifical Catholic University of Paraná, Brazil
b Electronics Engineering Graduate Program, Faculty of Gama, University of Brasilia, Brazil
c Department of Mechanical Engineering, University of Brasilia, Brazil
d Department of Electrical Engineering, Federal University of Paraná, Brazil

A R T I C L E I N F O

Keywords:
Radial basis functions neural networks
FPGA
Floating-point
Nonlinear systems
Embedded systems
System identification

A B S T R A C T

This paper aims at the proposition of novel architectures for radial basis function neural networks
implementation on hardware with custom-precision floating-point operations for black-box system modeling.
An analysis tool was built to establish the trade-off between the consumption of hardware resources and the
precision of the outputs, on the basis of the usage of the logic blocks on a field-programmable gate array and
output quality. The architectures have been tested with a standard system identification benchmark and the
speedup factors, when compared to a C implementation, are on the order of hundreds, what shows the
importance of ad-hoc hardware architectures for improving computational efficiency.

1. Introduction

The Radial Basis Functions Neural Network (RBFNN) is a kind of
Artificial Neural Network (ANN), which has been proposed in the late
1980s (Broomhead & Lowe, 1988). It has characteristics which
distinguish it among other ANNs. The RBFNN is composed of three
layers (input, hidden and output layers), the activation of the neurons
are defined with Radial Basis Functions (RBFs) and the input layer is
connected directly with the hidden layer. The fact that the RBFNN has
the universal approximation property (Park & Sandberg, 1991) and
one may employ simple strategies for learning such as k-means
clustering (Leonard & Kramer, 1991) as well as orthogonal least
squares (Chen, Cowan, & Grant, 1991), has motivated its use ever
since.

Due to its wide scope of applications and aiming at real-time
applications, ANNs have been implemented in reconfigurable hardware
such as Field-programmable Gate Arrays (FPGAs) since the 1990s
(Botros & Abdul-Aziz, 1994). In this work, the authors test in two
Xilinx XC3042 FPGAs an ANN trained off-line with 5 inputs, 4 neurons
and 2 outputs for a classification task. For a recent review on the topic
of ANNs implementations on FPGAs, the reader is referred to (Bosque,
del Campo, & Echanobe, 2014). Other sources are previous reviews
(Blake et al., 1998; Zhu & Sutton, 2003) and an organized book
(Omondi & Rajapakse, 2006). With respect to neuro-fuzzy systems,

Echanobe, del Campo, and Bosque (2008) implement a two-input one-
output special case of the adaptive-network-based fuzzy inference
system in Altera Stratix II EP2S15 FPGA.

Otherwise, the implementations of RBFNNs on hardware are not
numerous in the literature as we summarize below the works related
with this topic. Chen, Tsai, Lin, and Lee (2005) proposed an offline
trained RBFNN for the purpose of nonlinear channel equalization to a
Xilinx Virtex-2 FPGA, where the exponential function was approxi-
mated by a 4th order Taylor expansion. A scheme for RBFNN
evaluation and online training based on fuzzy c-means and recursive
least mean square algorithms are implemented on an FPGA in (Fan
and Hwang 2013). In this work, the authors use benchmarks for
classification problems to evaluate the implementation on an Altera
Cyclone III EP3C120 FPGA and calculate the exponent function with a
floating-point Altera megafunction. An FPGA architecture for RBFNN
is investigated in (Chou, Kung, Quynh, and Cheng 2013) when applied
to uncertainty detection for online controller tuning of a permanent-
magnet synchronous motor, and tested through co-simulation using
Simulink© and ModelSim© tools. The exponential function is calcu-
lated according to a 12th order Taylor expansion and the data types are
set in the Q15 format with 16 bits and two complements. In (Souza &
Fernandes, 2014), the authors propose the online training of RBFNNs
through the least mean squares algorithm, which is tested with the
XOR problem and sine function approximation in a Xilinx Virtex-6

http://dx.doi.org/10.1016/j.conengprac.2016.12.004
Received 27 September 2015; Received in revised form 8 December 2016; Accepted 9 December 2016

⁎ Correspondence to: Pontifical Catholic University of Paraná, Imaculada Conceicao, 1155, 80215-901 Curitiba, Paraná, Brazil.
E-mail address: helonayala@gmail.com (H.V.H. Ayala).

Control Engineering Practice 60 (2017) 124–132

0967-0661/ © 2016 Elsevier Ltd. All rights reserved.

MARK

http://www.sciencedirect.com/science/journal/09670661
http://www.elsevier.com/locate/conengprac
http://dx.doi.org/10.1016/j.conengprac.2016.12.004
http://dx.doi.org/10.1016/j.conengprac.2016.12.004
http://dx.doi.org/10.1016/j.conengprac.2016.12.004
http://crossmark.crossref.org/dialog/?doi=10.1016/j.conengprac.2016.12.004&domain=pdf


FPGA. In this work, the authors analyse, for fixed point operations, the
use of hardware, circuit frequency and output accuracy, by varying the
word length. The XOR problem is again used to test an RBFNN
implementation with 32-bits floating-point operations in FPGAs with
online backpropagation learning in (Kim & Jung, 2015), with the
Taylor series approximation for the Gaussian function. It is possible to
see that the cited works lack to compare the impact of the word length
on the precision and circuit consumption for floating-point operations
according to a given task, in order to establish an optimal compromise
between hardware use and RBFNN accuracy. Moreover, none of them
make use of the inherent modular architecture of the RBFNN to
provide solutions with the same word length but with less hardware
resources. As seen, none is dedicated to the case of dynamical system
modeling. The present paper aims to tackle those issues and to test the
RBFNN architecture on hardware in the system identification scenario
with real acquired data, as will be detailed later in this section.

Among the most important factors when implementing ANNs on
FPGA hardware, one may cite (Hu, Huang, Xing, & Wang, 2008): data
representation, inner-product calculation, implementation of the acti-
vation function, storage and update of the weights. With respect to data
representation, precision should be considered as it will directly affect
the final result. Note however that the resources needed in the
hardware will increase together with the precision. On this matter,
floating-point representations present advantages over fixed-point
(Smith, 1997) given that a fixed-point representation would require a
larger word to obtain the same precision as with the floating-point
representation (Ferreira, Ribeiro, Antunes, & Dias, 2007).
Nonetheless, there is not extensive support for designers on the topic
of floating-point arithmetics in FPGAs (Sahin, Becerikli, & Yazici,
2006). In the following, we present aspects regarding the motivation of
the present study which deals with architectures of RBFNNs with
custom-precision floating-point operations applied to black-box dy-
namic model representations on hardware.

1.1. Motivation

The RBFNN implementation on FPGAs with floating-point opera-
tions using custom-precision may be employed on a variety of fields,
where the compromise between the hardware resources and precision
is determinant. It is possible to readily apply, in the context of model-
based control approaches, the dynamic model of the system through
black-box ANNs. In this context, it is important to have fast and
accurate system responses as we shall demonstrate in the present
paper. ANNs are able to capture the dynamics of complex systems
(Nørgård, Ravn, Poulsen, & Hansen, 2000) and its implementation on
hardware may leverage their application to hardware-in-the-loop real-
time simulation (Craciun et al., 2014). We highlight below some
applications of the herein proposed RBFNN hardware implementations
related to system identification, Model Predictive Control (MPC) and
moving-horizon state estimation.

In tracking systems which are time variant, adaptive estimation and
system identification are of great importance. On these matters, self-
adaptation may be implemented in FPGAs through ANNs (Haykin,
1995) what would make possible the application of this class of
algorithms online. Under this circumstance, it is needed to readily
obtain up-to-date mathematical abstractions of the system in order to
change the parameters and structure of the controller. In this context,
adaptive system identification with ANNs and metaheuristic optimiza-
tion algorithms have been implemented in (Cavuslu, Karakuzu, and
Karakaya, 2012) and (Karakuzu, Karakaya, and Avuslu, 2016). Fault
diagnosis is also related to this topic, which is important in the context
of fault tolerant control. In (Cabal-Yepez et al., 2012) the authors
implement a neural classifier in FPGA to detect multiple combined
faulty modes for an induction motor.

Evolutionary algorithms (Simon, 2013) may be used in the context
of self-adaptation in system identification in order to define the weights

in the online learning process in FPGAs (Muñoz, Llanos, Coelho, &
Ayala-Rincón, 2014)—which are convenient for hardware implementa-
tion due to their simple mathematical operations and may thus be
implemented more quickly, and have proven to be valuable tools for
learning algorithms (Yao, 1999). Yet one might implement computa-
tionally intensive powerful neural control techniques in FPGAs using
the herein proposed architectures for RBFNN hardware design. The
RBFNNmay learn the inverse dynamic behavior of the system offline to
define the control action (Nørgård et al., 2000). The problem of
regulating the temperature of a solar power plant is tackled in
(Henriques, Gil, Cardoso, Carvalho, & Dourado, 2010), where the
dynamic model is represented by an ANN offline and adapted online
with an ad-hoc Kalman filter in order to account for uncertainties. In
(Na, Ren, Herrmann, & Qiao, 2011) the authors propose an adaptive
neural controller for servo systems with dead-zone and multiple time-
delays. A neuro-adaptive auto-landing control algorithm with dynamic
inversion was proposed in (Ambati & Padhi, 2016) with an RBFNN
employed to model uncertainties and disturbances.

Another possibility is the application of approximate solutions for
problems which in general require the resolution of a nonlinear
programming problem at each sampling interval—which restrict their
scope of application, even though they are powerful techniques. Among
them, some examples are MPC and moving-horizon state estimation.

The former may be treated as the resolution of an optimization
problem as each sampling instant in order to find the optimal control
action considering a prediction horizon, what may be faced as a
mapping from the feedback error and the model to the control law.
This mapping has been approximated by ANNs in e.g. (Gomez-Ortega
& Camacho, 1994), what is convenient when the MPC problem is not
possible to be analytically solved and high frequencies are required for
the controller. In (Peyrl, Zanarini, Besselmann, Liu, & Boéchat, 2014)
the authors adopt a different strategy by implementing a parallel fast
gradient descent algorithm on FPGAs and multi-core CPUs to solve
linear quadratic MPC problems.

The later amounts to the state estimation problem using a window
of most recent output measurements, which may be seen as a mapping
from the outputs to the estimated states. This may be treated similarly
as in the MPC case, by the offline construction of ANNs to obtain online
predictions. Moving-horizon state estimation algorithms for nonlinear
systems have been proposed in e.g. (Alessandri, Baglietto, &
Battistelli, 2008) together with an ANN-based approximate version;
for switching systems see for the linear case (Alessandri, Baglietto, &
Battistelli, 2005) and (Baglietto, Battistelli, Ayala, & Tesi, 2012) for
the nonlinear case.

As will be described in the present paper, the floating-point
implementation in hardware herein presented of RBFNN guarantees
time rates in the order of microseconds. This may leverage the
application with high frequencies on FPGAs of the aforementioned
powerful algorithms, yet computationally intensive, by the relaxation
with approximate solutions. Yet, the implementation of model based
control techniques may use ANN models. Adaptive system identifica-
tion may also be implemented on hardware by coupling the architec-
ture herein presented with a parameter estimation algorithm.

1.2. Contribution and manuscript organization

The present work proposes two novel architectures for the im-
plementation of RBFNNs in FPGA. The implementation focuses on (i)
custom floating-point representation, aiming at the precision required
by the solution; (ii) fully parallel and shared architectures of the
RBFNN, which guarantee fast response in the former case and
optimized use of the FPGA resources in the later; (iii) validation of
the implemented RBFNN approaches in the case of nonlinear black-
box system identification problem, by implementing the architectures
in a Xilinx Artix-7 FPGA, which is a low-cost hardware alternative. The
system identification problem chosen to validate the proposed archi-

H.V.H. Ayala et al. Control Engineering Practice 60 (2017) 124–132

125



Download English Version:

https://daneshyari.com/en/article/5000403

Download Persian Version:

https://daneshyari.com/article/5000403

Daneshyari.com

https://daneshyari.com/en/article/5000403
https://daneshyari.com/article/5000403
https://daneshyari.com

