Control Engineering Practice 59 (2017) 127-136

Contents lists available at ScienceDirect

Control
Engineering
Practice

Control Engineering Practice

journal homepage: www.elsevier.com/locate/conengprac

Motion planning for robotic manipulators using robust constrained control @ CrossMark

Andrea Maria Zanchettin®, Paolo Rocco

Politecnico di Milano, Dipartimento di Elettronica, Informazione e Bioingegneria, Piazza Leonardo Da Vinci 32, Milano, Italy

ARTICLE INFO ABSTRACT

Since their first appearance in the 1970's, industrial robotic manipulators have considerably extended their
application fields, allowing end-users to adopt this technology in previously unexplored scenarios.
Correspondingly, the way robot motion can be specified has become more and more complex, requiring new

Keywords:
Robotic manipulators
Trajectory planning

Constraints capabilities to the robot, such as reactivity and adaptability. For an even enhanced and widespread use of
Robustness s . .
Uncertainty industrial manipulators, including the newly introduced collaborative robots, it is necessary to simplify robot

programming, thus allowing this activity to be handled by non-expert users. Next generation robot controllers
should intelligently and autonomously interpret production constraints, specified by an application expert, and
transform them into motion commands only at a lower and real-time level, where updated sensor information
or other kind of events can be handled consistently with the higher level specifications. The availability of
several execution strategies could be then effectively exploited in order to further enhance the flexibility of the
resulting robot motion, especially during collaboration with humans.

This paper presents a novel methodology for motion specification and robust reactive execution. Traditional
trajectory generation techniques and optimisation-based control strategies are merged into a unified framework
for simultaneous motion planning and control. An experimental case study demonstrates the effectiveness and
the robustness of this approach, as applied to an image-guided grasping task.

Industrial robots

1. Introduction

Robot motions are typically programmed by means of Cartesian
and angular position and velocity profiles of the end-effector along a
given path. Programming a specific task, which happens in today's
motion generation algorithms, results in solving the motion planning
problem by actually over-constraining the space of solutions in order to
select a particular end-effector motion among others. Even more
advanced and commercially available trajectory planning strategies
prevent the low-level controller from adapting or modifying the
generated trajectory based on real-time events or sensor readings, or
need a lot of handling logics to be pre-programmed, rarely guarantee-
ing hard real-time capabilities or reduced reaction times.

Constraint-based programming of robot motions represents the
most natural solution to the problem of indirectly planning a robot
trajectory based on process requirements, which are specified by means
of constraints. The constraint-based approach, originally introduced in
Siciliano and Slotine (1991) based on the task-function formalism,
Samson, Espiau, and Borgne (1991), has been recently and intensively
exploited within the so-called iTaSC (instantaneous Task Specification
using Constraints) framework, see De Schutter et al. (). While originally
developed to cope only with instantaneous constraints (i.e., those

* Corresponding author.

corresponding to the current time instant), recent extensions towards
a more comprehensive constraints representation are reported, see e.g.
Decre, Bruyninckx, and De Schutter (2013). A very similar approach
has been presented within the Stack of Tasks framework, see Mansard,
Khatib, and Kheddar (2009), Escande, Mansard, and Wieber (2014).
Similar to the Stack of Tasks, the iCAT (inequality Control objectives,
Activations and Transitions) task priority framework was introduced in
Simetti and Casalino (2016) to deal with smooth transitions during
task activation/deactivation. Yet another similar prioritised framework
has been recently proposed in Tazaki and Suzuki (2014). In
Kermorgant and Chaumette (2014), another control method dealing
with constraints is presented: constraints (such as joint limits and field-
of-view constraints) are conveniently defined as additional costs to be
optimised and activated by suitable thresholds.

A constraint-based approach to accommodate joint position limits,
as well as velocity, acceleration or even torque ones has been proposed
in Antonelli, Chiaverini, and Fusco (2003), Flacco and De Luca (2015)
with reactive capabilities based on time-based trajectory scaling. These
methods, however, only rely on pure kinematic or dynamic rescaling of
a predefined trajectory, which limits the reaction capabilities of the
robot. In fact, a simple scaling technique not always guarantees the
existence of a feasible motion. Moreover, such approaches only deal

E-mail addresses: andreamaria.zanchettin@polimi.it (A.M. Zanchettin), paolo.rocco@polimi.it (P. Rocco).

http://dx.doi.org/10.1016/j.conengprac.2016.11.010

Received 10 May 2016; Received in revised form 8 September 2016; Accepted 16 November 2016

0967-0661/ © 2016 Elsevier Ltd. All rights reserved.

http://www.sciencedirect.com/science/journal/09670661
http://www.elsevier.com/locate/conengprac
http://dx.doi.org/10.1016/j.conengprac.2016.11.010
http://dx.doi.org/10.1016/j.conengprac.2016.11.010
http://dx.doi.org/10.1016/j.conengprac.2016.11.010
http://crossmark.crossref.org/dialog/?doi=10.1016/j.conengprac.2016.11.010&domain=pdf

A.M. Zanchettin, P. Rocco

with decoupled constraints in the joint space like the avoidance of joint
position, velocity or acceleration limits.

In the framework of constraint-based trajectory planning, it is
important to mention the works in Macfarlane and Croft (2003),
Biagiotti and Melchiorri (2008), Kroeger and Wahl (2010) which
present various approaches for online generation of smooth and
time-optimal trajectories for multi-axes machines and robots.

For a better and reliable task execution, the problem of trajectory
planning and the subsequent (constraint-based) control should be merged
in a unified framework with capabilities of both motion planning and
reactive control/execution. Beside the constraint-based specification, the
first idea of connecting planning and reactive/adaptation capabilities was
developed in Quinlan and Khatib (1993), within the well-known Elastic
Strips framework, and later refined within the Elastic Bands framework,
Brock and Khatib (2002). Other examples of real-time reaction planners
can be found in, e.g., Haddadin et al. (2010), where virtual and physical
contact are merged to form the desired reactive behaviour, or in Khansari-
Zadeh and Billard (2012), where the reactive behaviour of the robot is
obtained by the imposition of a proper attractor dynamics. Finally
(Hauser, 2012) presents a re-planning strategy to be executed when the
nominal plan fails, due to unpredictable obstacles movements.

This work presents a method to combine a trajectory generation
algorithm with a constrained optimisation problem, which relies on a
continuously updated reference trajectory and a reactive control
strategy. Further details on the features of the proposed algorithm
and on how the method stands with respect to available results are
discussed in the next Section. The remainder of this paper is organised
as follows. Section 2 describes the motivations underlying this work
and discusses the original contribution with respect to the existing
literature. In Section 3, the main contribution is detailed and an
algorithm for constraint-based reactive trajectory generation is pre-
sented. Section 4 briefly discusses two extensions to cope with
redundant robots and to enforce a compliant behaviour of the robot,
respectively. Section 5 complements the specification of the algorithm
with best practice to guarantee robustness of the overall system with
respect to measurement uncertainties. Finally, an experimental case
study, describing how a selected application may benefit from the
proposed approach, is reported in Section 6.

2. Motivations and problem setting

In this Section, we first motivate our work and then discuss the
main features of the approach as compared with the state of the art.

2.1. Motivations and key concepts

Today's robots are able to execute tasks that are way more complex
than those they were originally designed for. Is worth noticing that the
VAL scripting language, developed by Unimation Robotics in the mid
1970's, consisted in no more than 30 instructions. Nowadays, advanced
scripting languages for modern industrial robots, like ABB's RAPID or
KUKA KRL, include hundreds of different instructions. Therefore, as
the adoption of robots is becoming more and more pervasive, novel
applications require more and more advanced functionalities, hence
more involved programming primitives, especially to promptly react or
adapt to unpredicted situations.

The main idea behind this work is to develop a control architecture
that endows the robot with advanced flexibility during task execution.
Specifically, we propose to use control tools to move from an imperative
programming paradigm (i.e. specifying the robot how to perform a task),
in which process requirements are semantically and uniquely mapped by
the robot programmer into a suitable end-effector velocity profile,
towards a declarative programming paradigm (i.e. specifying require-
ments for task execution, and leave to the robot the autonomy to execute
it properly). With this paradigm, process requirement and constraints
are turned by the controller into motion commands only at run-time,

128

Control Engineering Practice 59 (2017) 127-136

Handling Workspace >50 ms v < 5ms
logics sensing
Trajectory
generation .
[Target state Desired state Control
[of motion _/_\ of miotion Axis command
I:II:I controller
InStEUCEO” Actual state
stacl of motion
(a) Pipelined control architecture
>50ms ! <5ms Task constraints Workspace
and requirements sensing
| . Trajectory :
| ' generation v
1 Ta;get‘ f_tate Desired state Control
[L _/_‘ of motion | Reactive | command
L1 : controller
Instruciion Actual state
stac of motion

(b) Reactive control architecture

Fig. 1. Proposed control architecture (bottom) as compared to a traditional solution
(top).

hence embedding the capability of handling real-time events, with
reduced pre-programmed control logics. This shift of paradigm repre-
sents a major improvement for the control of new generation robots
working in unstructured environments, and thus allows a more wide-
spread use of robotic technology, especially in SMEs.

A pictorial view of the idea is sketched in Fig. 1, as compared to the
traditional pipelined approach. In traditional robot programming, see
Fig. 1(a), the trajectory is offline computed and possibly optimised,
whilst being only online evaluated, hence leading to a completely
pipelined and non reactive execution. This architecture may introduce
inefficient handling strategy of sensed events, as the event has to traverse
the whole architecture before ultimately influencing the control com-
mands. Moreover, the programmer should specify how to handle each
single event or deviation from the nominal task execution when a
corresponding trajectory has been already generated. This setting has
clearly two major drawbacks: (a) the user of the robotic application
should be simultaneously an expert of both the process and the typical
robotic programming structures, and (b) a significant lag between an
event and the corresponding handle triggering may be thus introduced.

Within this work, we propose a method, see Fig. 1(b), to con-
tinuously re-generate, and hence evaluate, the reference trajectory
towards a given goal depending on the current state of the robot. The
reactive controller generates the next control command based on the
current desired state of motion and of the workspace sensing, with the
aim of tracking the desired motion to the extent allowed by the
constraints specified by the programmer. If this entails a deviation
from the planned trajectory, a new trajectory from the current state of
motion to the target is generated. Furthermore the robot is endowed
with reactive capabilities within a millisecond time scale, something
difficult, if not impossible, to achieve with a traditional pipelined
architecture. This way the robotic programmer is free to focus only on
process requirements (which are then suitably turned into constraints)
without caring of what-if handling strategies to define each possible
non-nominal behaviour to cope with at execution time. The main task
of the programmer is then to specify all the common features of each
possible nominal behaviour, whilst a particular one will be eventually
selected during execution, based on the actual context (i.e., presence of
human co-workers, moving obstacles, etc).

2.2. Contributions and comparisons

Most of the available results in the literature, like the iTaSC (De

Download English Version:

https://daneshyari.com/en/article/5000430

Download Persian Version:

https://daneshyari.com/article/5000430

Daneshyari.com

https://daneshyari.com/en/article/5000430
https://daneshyari.com/article/5000430
https://daneshyari.com

