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A B S T R A C T

As a multivariate statistical tool, the modified independent component analysis (MICA) has drawn considerable
attention within the non-Gaussian process monitoring circle since it can solve two main problems in the original
ICA method. Despite the diversity in applications, the determination logic for non-quadratic functions involved
in the iterative procedures of MICA algorithm has always been empirical. Given that the MICA is an
unsupervised modeling method, a direct rational study that can conclusively demonstrate which non-quadratic
function is optimal for the general purpose of fault detection is inaccessible. The selection of non-quadratic
functions is still a challenge that has rarely been attempted. Recognition of this issue and motivated by the
superiority of ensemble learning strategy, a novel ensemble MICA (EMICA) modeling approach is presented for
enhancing non-Gaussian process monitoring performance. Instead of focusing on a single non-quadratic
function, the proposed method combines multiple base MICA models derived from different non-quadratic
functions into an ensemble one, and the Bayesian inference is employed as a decision fusion method to form a
unique monitoring index for fault detection. The enhanced fault detectability of the EMICA method is also
illustrated on two industrial processes.

1. Introduction

Modern industrial plants have been witnessing a rapid development
of distributed computer-aided systems and sensor technologies as well
as operator support systems through data-driven process monitoring
systems, in particular, multivariate statistical process monitoring
(MSPM) techniques in recent years (Ruiz-Cárcel, Cao, Mba, Lao, &
Samuel, 2015; Yin, Li, Gao, & Kaynak, 2015). Not surprisingly, MSPM
on the basis of two fundamental algorithms: principal component
analysis (PCA) and partial least squares (PLS), has been receiving
considerable attention as first-principle models of modern complex
process systems are often costly to develop or practically inaccessible
(Portnoy, Melendez, Pinzon, & Sanjuan, 2016; Yin, Ding, Xie, & Luo,
2014). However, the proficiency of identifying faults from data for the
PCA/PLS-based methods can be deteriorated because they assume that
the sampled data follows a multivariate Gaussian distribution approxi-
mately (Lee, Qin, & Lee, 2006; Lee, Yoo, & Lee, 2004; Zhang &
Zhang, 2010). To handle the monitoring problem of non-Gaussian
processes, independent component analysis (ICA), which can extract
more useful information from non-Gaussian process data with the
utilization of higher-order statistics, has been intensively investigated
in the last few years (Fan, Qin, & Wang, 2014; Hsu, Chen, & Chen,

2010; Jiang, Wang, & Yan, 2015; Lee et al., 2006; Zhang & Zhang,
2010). In comparison to PCA, ICA not only de-correlates the data but
also makes the projected data as independent as possible, and thus
glean more essential features from observed measurements.

Among the diverse applications of the ICA-based non-Gaussian
process monitoring, the FastICA iterative algorithm proposed by
Hyvärinen (1999) is always employed as a “default” method for model
construction because it can greatly reduce the computation time.
However, the utilization of the FastICA algorithm has some drawbacks
in practical applications. First, different solutions would be obtained
because of its random initialization step, which might result in unstable
monitoring models. Second, unlike PCA model which sorts the
importance of the principal components (PCs) according to their
variance, a proper ordering of the independent components (ICs) is
still a well-known issue. To tackle these challenges, Lee et al. (2006)
developed a modified ICA (MICA) algorithm that extracts a small
number of ordered ICs and produces a consistent result as well. The
basic idea is to first use the normalized PCs from PCA model as an
initial estimate for ICs and then to perform the FastICA algorithm to
update the dominant ICs while maintaining the variance. Furthermore,
Zhang and Zhang (2010) adopted the particle swarm optimization
method for estimating ICs, and the importance of ICs is then sorted by
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the role of resumption of the original data. Although the PSO-based
ICA algorithm would reduce the risk of obtaining local minimum
solution, it increases the computation time compared with the FastICA
algorithm. Recently, Ge and Song (2013) developed a performance-
driven ensemble learning ICA model for non-Gaussian process mon-
itoring. The ensemble learning approach is used to improve the
stability of the FastICA algorithm, and the determination of dominant
ICs is realized by a performance-driven method with reference
abnormal datasets involved. The essence of the ensemble learning is
to combine multiple solutions from different models into a unique one,
which is expected to give a significantly better result than any outcomes
of individual solutions. Benefiting from this superiority, the ensemble
learning technique has become quite popular in the field of MSPM over
the last several years (Ge & Song, 2014; Li & Yang, 2014; Tong,
Palazoglu, & Yan, 2014).

Nevertheless, it should be stressed that all these ICA modeling
methods mentioned above involve a measure of non-Gaussianity so as
to reflect the statistically independence of ICs. The negentropy on the
basis of the information theoretic quantity of differential entropy, is
usually served as a good estimate of non-Gaussianity of a random
variable. However, the calculation of negentropy requires an estimation
of the probability density function, which sometimes is unobtainable.
Fortunately, Hyvärinen (1999) formulated a feasible and reliable
calculation of negentropy through using a proper non-quadratic
function. Given that there are three suggestions for the non-quadratic
function available in the literature, the stability of the ICA model
cannot be ensured with different non-quadratic functions employed,
and thus the resulted monitoring performance would also be affected.
Generally, the modeling procedures in the ICA-based process monitor-
ing method as well as other approaches in MSPM are unsupervised,
which means that only a dataset sampled under normal operating
condition is needed. Without respect to abnormal data, a proper
selection of the non-quadratic functions is inaccessible. Meanwhile,
the available samples from all possible faulty conditions is highly
limited, a single empirically determination of the non-quadratic
functions would lead to some specific faults undetected. From this
viewpoint, a single non-quadratic function cannot be effective for all
kinds of faults. Therefore, the selection of non-quadratic functions is a
severe problem that remains unsolved.

Recognition of this issue motivates the current study, which
integrates the ensemble learning strategy into the MICA algorithm.
As mentioned previously, the MICA modeling method can address the
two challenges existed in the original ICA iterative procedures.
Additionally, the MICA only extracts a few dominant ICs instead of
all ICs that needed for process monitoring, high computational load
can thus be attenuated (Lee et al., 2006). With the involvement of
ensemble learning strategy, the proposed ensemble MICA (EMICA)
method combines multiple base MICA models resulted from different
non-quadratic functions into an ensemble one through Bayesian
inference based decision fusion (Ghosh, Ng, & Srinivasan, 2011).
Since any of these non-quadratic functions could be useful for fault
detection, a feasible solution is to take advantage of all of them, and
then produce an ensemble result for enhanced non-Gaussian process
monitoring. Unlike traditional MICA-based monitoring method, multi-
ple base MICA monitoring models with different non-quadratic func-
tions utilized are first developed, the Bayesian inference strategy is then
employed for online fault alarm decision fusion, which generates an
ensemble probabilistic index from multiple monitoring statistics.

2. MICA based process monitoring

2.1. MICA algorithm

The first step of MICA method is to use PCA to extract all available
PCs from data RX ∈ m n× :

T P X= T (1)

where X contains n samples of m measured variables. RT ∈ m n×

consists of the extracted PCs, RP ∈ m m× is composed of the eigenvectors
of covariance matrix nXX PΛP/( − 1) =T T, and diag λ λ λΛ = { , ,…, }m1 2 .
The last few elements in Λ are sometimes close to zero because of the
collinearity existed in the measurements, they can be excluded. But it is
highly suggested to include as many eigenvalues as possible. The
extracted PCs are whitened as follows:

Z Λ T Λ P X QX= = =−1/2 −1/2 T (2)

where Q Λ P= −1/2 T. The whitened components Z is then served as an
initial estimate for ICs.

The objective of MICA algorithm is to update a matrix RC ∈ m d×

satisfying C C D=T with a form such that the extracted components

S C Z= T (3)

become as independent of each other as possible, where
diag λ λ λD = { , ,…, }d1 2 . The requirement nSS D/( − 1) =T makes the

variance of each IC in S and the corresponding PC in PCA be the same
Therefore, a proper ordering of the ICs in MICA can then be realized in
accordance with their variance. The S can be normalized by

S D S D C Z C Z= = =n n
−1/2 −1/2 T T (4)

with C D C=n
T −1/2 T and C C I=n n

T , the main task of MICA is thus
reduced to find the matrix Cn. The demixing matrix RW ∈ d m× and
mixing matrix RA ∈ m d× are given as

W D C Q D C Λ P= =n n
1/2 T 1/2 T −1/2 T (5)

A PΛ C D= n
1/2 −1/2 (6)

where RWA I= ∈d
d d× . Given that the variance of each IC in S is the

same as that of the corresponding PC in PCA, the number of retained
ICs, d, can then be determined by some criteria that used in PCA (Valle,
Li, & Qin, 1999; Wold, 1978), for example, cumulative percent
variance (CPV). If the process data strictly follows an Gaussian
distribution, Cn reduces to I 0[ ⋮ ]d , which means S T= . Therefore, the
PCA can be considered as a special case of the MICA, and the updating
of Cn can be started from a fixed initialization, i.e., I 0[ ⋮ ]d .

In the MICA iterative procedures provided in the Appendix, the
statistically independent requirement of ICs needs a measure of non-
Gaussianity. Generally, the measure of non-Gaussianity is approxi-
mated by

J y E G y E G v( ) = [ { ( )} − { ( )}]2 (7)

where y is scaled to be of zero mean and unit variance, v is a Gaussian
variable of zero mean and unit variance, and G is known as the non-
quadratic function. Hyvärinen and Oja (2000) introduced three non-
quadratic functions:

G u
a

a u( ) = 1 log cosh( )1
1

1
(8)

G u a u( ) = exp(− /2)2 2
2 (9)

G u u( ) =3
4 (10)

where a1 ≤ ≤ 21 and a ≈ 12 . It has been empirically shown that G1 is a
good contrast function, and it is usually adopted for ICA model
construction. However, as will be illustrated later, the function G1

cannot be always good for improving fault detectability since the MICA
is an unsupervised modeling method. The selection of G would highly
influence the coming monitoring results. Without enough prior knowl-
edge, the optimal determination of function G is still an open problem.

2.2. Process monitoring based on MICA algorithm

Similar to PCA-based fault detection method, the implementation
of MICA for fault detection also depends on two statistics (i.e., T2 and
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