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a b s t r a c t

In this paper, we discuss overnight blood glucose stabilization in patients with type 1 diabetes using a
Model Predictive Controller (MPC). We compute the model parameters in the MPC using a simple and
systematic method based on a priori available patient information. We describe and compare 3 different
model structures. The first model structure is an autoregressive integrated moving average with exo-
genous input (ARIMAX) structure. The second model structure is an autoregressive moving average with
exogenous input (ARMAX) model, i.e. a model without an integrator. The third model structure is an
adaptive ARMAX model in which we use a recursive extended least squares (RELS) method to estimate
parameters of the stochastic part. In addition, we describe some safety layers in the control algorithm
that improve the controller robustness and reduce the risk of hypoglycemia. We test and compare our
control strategies using a virtual clinic of 100 randomly generated patients with a representative inter-
subject variability. This virtual clinic is based on the Hovorka model. We consider the case where only
half of the meal bolus is administered at mealtime, and the case where the insulin sensitivity increases
during the night. The numerical results suggest that the use of an integrator leads to higher occurrence of
hypoglycemia than for the controllers without the integrator. Compared to other control strategies, the
adaptive MPC reduces both the time spent in hypoglycemia and the time spent in hyperglycemia.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Type 1 diabetes is a metabolic disease characterized by de-
struction of the insulin-producing β-cells in the pancreas. There-
fore, patients with type 1 diabetes need exogenous insulin ad-
ministration. However, the dosage of insulin must be done care-
fully. An insulin overdose may lead to low blood glucose (hy-
poglycemia). Hypoglycemia has immediate effects, such as sei-
zures, coma or even death. In contrast, prolonged periods of too
high blood glucose (hyperglycemia) are associated with compli-
cations such as retinopathy, neuropathy and nephropathy (Amer-
ican Diabetes Association, 2015).

An increasing number of patients with type 1 diabetes apply a
therapy approach based on continuous subcutaneous (sc) insulin
infusion (CSII) using insulin pumps combined with continuous

glucose monitoring devices (CGMs). CGMs provide frequent sub-
cutaneous (sc) glucose measurements. The CSII pump provides a
preprogrammed continuous infusion of rapid acting insulin to
mitigate the endogenous glucose production (EGP) from the liver.
Larger amounts of insulin are administered in relation to meals to
compensate the effects of carbohydrates (CHO) intake. However,
the decisions on the timing and amount of meal insulin injection
as well as the profile of the EGP insulin injection are left to the
patient. By automating the decisions on insulin injections, closed-
loop control of the blood glucose concentration by an Artificial
Pancreas (AP) has the potential to ease the life and reduce the
burden and risk of complications for patients with type 1 diabetes.
The first version of the AP (Biostator) was developed 40 years ago
(Albisser et al., 1974; Pfeiffer, Thum, & Clemens, 1974). It used in-
travenous insulin, dextrose injections, and intravenous glucose
measurements. However, this setup is only usable for in-clinical
studies and does not mimic everyday life of a type 1 diabetes
patient. Current prototypes of the AP use the sc–sc route for glu-
cose sensing and injection of insulin. They include a CGM, a con-
trol algorithm, and an insulin pump. Fig. 1 illustrates the principle
of an AP. Even more recently, glucagon has been tested as a safety
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hormone (Bátora et al., 2014; Herrero et al., 2013; Russell et al.,
2014), but the use of glucagon is not considered in this paper.
Several research groups worked on the implementation of APs and
tested their implementation with virtual patients (Eren-Oruklu,
Cinar, Quinn, & Smith, 2009; Magni et al., 2009; Soru et al., 2012)
as well as in vivo clinical studies (Breton et al., 2012; Hovorka
et al., 2010; Kovatchev et al., 2014; Phillip et al., 2013; Schmidt
et al., 2013). Regardless of the control algorithm used, the per-
formance of current APs is limited by several factors: (1) the intra-
and inter-patient variability; (2) the lags and delays associated to
the choice of the sc–sc route for glucose monitoring and insulin
administration (Boiroux, Finan, Poulsen, Madsen, & Jørgensen,
2010); and (3) the accuracy and reliability of the CGM.

Model Predictive Control (MPC) is one of the most commonly
used methods for the AP. The main advantage of MPC is the ability
to handle hard constraints on input variables and soft constraints on
output variables in a systematic way. Insulin on board (IOB) con-
straints in the linear MPC can reduce the risk of overdosing insulin
due to nonlinearities in glucose–insulin dynamics (Ellingsen et al.,
2009). MPC can easily incorporate a feedforward–feedback me-
chanism that reduces the postprandial glucose peak by adminis-
tering meal boluses in anticipation of meals (Abu-Rmileh & Garcia-
Gabin, 2010; Marchetti, Barolo, Jovanovič, Zisser, & Seborg, 2008).
Disturbances such as meal intake, physical exercise, stress, and ill-
ness affect the insulin needs throughout the day. Patients with type
1 diabetes usually reject the disturbance coming from meals by
taking a large amount of insulin. In this procedure, it is implicitly
assumed that people with type 1 diabetes can accurately estimate
their meal sizes and have an accurate knowledge of their post-
prandial dynamics. In practice, patients typically do not have such
information available (Brazeau et al., 2013). Moreover, other sources
of disturbances cannot easily be measured and are usually included
in a stochastic term. An adaptive control algorithm has the potential
to cope with these unknown disturbances (Eren-Oruklu et al., 2009;
Fischer et al., 1987).

This paper presents an adaptive control strategy for overnight
BG stabilization. We describe an AP using a CGM for glucose
feedback, an insulin pump, and a control algorithm based on MPC.
The considered control strategy requires a priori available patient
information for computing a subject-specific set of parameters.
The required information is the basal insulin infusion rate, the
insulin sensitivity factor (also called the correction factor), and the
insulin action time. We discuss MPCs based on three different
structures for the stochastic part of a deterministic–stochastic in-
put–output model. The first MPC is based on an autoregressive
integrated moving average with exogenous input (ARIMAX)
model. The integrator in the ARIMAX based MPC provides steady-
state offset free control at the expense of a deliberate model-plant
mismatch that increases the variance of the control error (Huu-
som, Poulsen, Jørgensen, & Jørgensen, 2012; Jørgensen, Huusom, &
Rawlings, 2011). The ARIMAX based MPC is described in Boiroux,

Duun-Henriksen, Schmidt, Nørgaard, et al. (2012) and tested in an
overnight clinical study (Schmidt et al., 2013). The key novelties in
this paper are that we investigate by simulation if the integrator is
needed in the MPC for an AP and introduce adaptive estimation.
Therefore, the second MPC is based on an autoregressive moving
average with exogenous input (ARMAX) model, i.e. a model
without an integrator. This model cannot guarantee offset-free
steady state control to step disturbances but provides lower con-
trol error variance (Huusom et al., 2012; Jørgensen et al., 2011).The
third MPC is based on an adaptive ARMAX model in which we use
a Recursive Extended Least Square (RELS) method to estimate
parameters of the moving average part. The controllers are tested
and compared using a cohort of 100 virtual patients. The use of
simulations prior to in vivo clinical studies serves two purposes.
First, simulations are able to reproduce exactly the same scenario,
while the intra-individual variability limits the reproducibility in
real patients. Therefore, simulations allow a more rigorous com-
parison between different controllers. Second, simulations can be
conducted on a larger population and allow to test several control
strategies at a much lower cost than tests using real patients. It
would not even be ethically permissible to conduct some in silico
tests in vivo.

The paper is structured as follows. In Section 2, we describe the
model and the methods used to simulate a cohort of patients with
type 1 diabetes and noise-corrupted CGM measurements. Section
3 presents a procedure for computation of the deterministic part
of the model used by the MPC. The parameters in this part of the
model are derived from prior patient information and are common
for the three model classes. In Section 4, we introduce the sto-
chastic models for the three different MPCs. Furthermore, we de-
scribe the realization of the deterministic–stochastic input–output
models as state space models in innovation form and present the
corresponding Kalman filtering and prediction equations. Section
5 presents the MPC algorithm used in the AP. The MPC is based on
a state space model in innovation form and uses soft output
constraints to define a zone of desirable glucose concentrations. In
Section 6, we evaluate and discuss the performance of the three
different controllers using a cohort of 100 virtual patients. We
consider the case where half of the ideal meal bolus is adminis-
tered at mealtime, and the case where the insulin sensitivity in-
creases during the night. Conclusions are provided in Section 7.

2. Physiological models for patients with type 1 diabetes

Several physiological models have been developed to simulate
virtual patients with type 1 diabetes (Bergman, Phillips, & Cobelli,
1981; Dalla Man, Rizza, & Cobelli, 2007; Hovorka et al., 2004). They
describe subcutaneous insulin transport, intake of carbohydrates
through meals, and include a model of glucose–insulin dynamics.

In this paper, we use the Hovorka model to simulate patients

Fig. 1. Closed-loop glucose control. Glucose is measured subcutaneously using a continuous glucose monitor (CGM). Insulin is dosed by an insulin pump.
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