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a  b  s  t  r  a  c  t

This  paper  describes  two network  models  which  allow  several  harmonic  and  electromagnetic  transient
analysis,  being,  therefore,  more  flexible  than  conventional  ones.  In  general,  these  models  can  be used
to  perform  time  simulation,  frequency  scan  and  modal  analyses.  The  system  matrices  are  assembled  for
an industrial  system  example.  Harmonic  problems  are  proposed  and  solved  using a  non-conventional
analysis  with  the  described  models.  Results  on  a large-scale  power  system  regarding  computational
performance  are  also included.
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1. Introduction

The proposed methodology utilizes two electrical network-
modeling techniques, named descriptor systems [1] and Y(s) matrix
[2–4], that allow electrical network analyses over the entire com-
plex plane s instead of just over the imaginary “jω” axis [5]. In
this expanded domain, modal analysis can be performed, provid-
ing an important set of structural system information that is hard
to obtain using time simulation or frequency response methods
[5]. The information provided by modal analysis includes the natu-
ral oscillation modes (system poles), identification of equipment
that more heavily participate in these modes, modal resonance
sensitivities, etc. This structural information set has been used to
solve harmonic problems [1], electromagnetic transient analysis
[4] and build network dynamic equivalents [6]. It must be pointed
out that with the increase of the renewable energy sources, such as
wind farms, in the power systems, resonance sensitivity analysis
has become an important tool for identifying and solve harmonic
resonance problems [7–11]. This timely subject is exploited in the
application example. The main contributions of this paper are:
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• Presentation of the whole set of component models, including
the descriptor system modeling of three-winding transformers,
transmission lines using cascaded RLC-� circuits and voltage
sources, not previously presented in the literature. Some exam-
ples using the two  proposed modeling techniques, including
symbolic matrices of a test system, give an important tutorial
aspect to this paper.

• A comparison between the descriptor system and Y(s) network
modeling techniques.

• An application in harmonics consisting in a methodology for shift-
ing a set of system poles to more suitable locations in the complex
plane to reduce harmonic voltage distortions more straightfor-
ward than previous techniques [1,2,10,11].

• Considerations on the computational performance of the two
modeling techniques applied to a large-scale power system.

2. Network modeling techniques for modal analysis

Despite of the advantages of using modal analysis, it has been
only moderately used in power system studies considering the
electrical network dynamics. This fact may  be associated with the
difficulties faced when using conventional state space techniques
for modeling the dynamics of large RLC networks of generic topol-
ogy [1]. These difficulties are eliminated when using the proposed
techniques explained in the following sub-sections. The modeling
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of the basic components of electrical networks is presented in the
sequence.

2.1. Descriptor system

The electrical network modeling by descriptor system is accom-
plished by an augmented differential-algebraic equation (DAE)
system, as shown in (1) and (2).

T ẋ (t) = A x (t) + B u (t) (1)

y (t) = C x (t) + D u (t) (2)

where x is the vector of system variables, including state and alge-
braic ones, u and y are the input and output vectors. In this proposed
modeling, A, B, C, D and T are very sparse matrices that include the
constant coefficients of the linear system equations.

In the particular case of the proposed modeling, the augmented
state vector is composed by all inductive currents, all capaci-
tors voltages and some additional variables, as will be seen in
the sequence. State variable redundancies caused, for instance, by
nodes having only inductors or meshes having only capacitors do
not need to be eliminated [1]. Matrix T is diagonal, having zeros
for the lines corresponding to algebraic equations and non-zero
elements for the lines corresponding to differential equations. The
dynamic behavior of the electrical network is described by the
equation system produced by the differential and algebraic equa-
tions of the electrical components together with those proceeded
from the Kirchhoff’s current law (KCL) applied to each circuit node.
In the following subsections, the electrical component equations
will be developed while the matrices for a simple test system
including the KCL equations are presented in Section 3.

2.1.1. RLC series branch
A RLC series branch connected between the nodes (buses) k and

j is described by:

vk − vj = R ikj + L
dikj
dt

+  vC (3)

C
dvC
dt

= ikj (4)

where vk and vj are the voltages of nodes k and j, respectively, ikj is
the branch current and vC is the capacitor voltage. These equations
hold when there is no inductor (L = 0) in the branch. When there is
no capacitor (C → ∞),  one may  use only (3) with vC = 0, excluding
(4).

2.1.2. RLC parallel branch
In this case the equations are:

vC
R

+  iL + C
dvC
dt

= ikj (5)

L
diL
dt

=  vC (6)

vC = vk − vj (7)

The symbols vk, vj , ikj and vC have the same meaning of the RLC
series branch. These equations hold when there is no capacitor
(C = 0) in the branch. For the case of L → ∞,  one may  use only (5)
and (7) with iL = 0, excluding (6).

2.1.3. Voltage source
A voltage source vf with internal resistance Rf and inductance

Lf connected between the nodes k and j is described by:

vk − vj = vf − Lf
dif
dt

− Rf if (8)

where vk and vj have already been defined and if is the current
provided by the voltage source.

2.1.4. Transmission line
In the descriptor system formulation, the transmission lines can

be modeled by cascaded RLC-� circuits as shown in Fig. 1, con-
necting the physical nodes k and j. Between these nodes, there are
internal fictitious nodes used to assemble the model equations. The
internal nodes were numerated from 1 to n, being a generic node
denoted by m.

Using the node equation
∑

i = 0 for the node 1, one obtains:

C

2
dv1

dt
= −i1,2 + ik,1 (9)

Using the mesh equation
∑

v = 0 for the generic loop of nodes m
and m + 1, one obtains:

L
dim, m+1

dt
= −R im, m+1 + vm − vm+1 , m = 1, n − 1 (10)

The node equation
∑

i = 0 applied to the generic node m and the
last node n yields, respectively:

C
dvm
dt

= im−1, m − im, m+1 , m = 2, n − 1 (11)

C

2
dvn
dt

=  in−1 , n − i n, j (12)

Finally, the interface equations, relating the internal node volt-
ages of the model with the network voltages at nodes k and j are
given by:

vk − v1 = 0 (13)

vj − vn = 0 (14)

2.1.5. Three-winding transformer
Fig. 2 presents the positive sequence diagram of a three-winding

transformer, with its variables in pu, connecting the physical nodes
k, j and l of an electrical network. The symbols m1, m2 and m3
correspond to the values of the winding taps. Depending on the
three phase connections of the windings, there may be phase-shifts
among windings taken into account by complex taps [12]. Parame-
ters RT1 , LT1 , RT2 , LT2 , RT3 and LT3 are winding resistances and leakage
inductances of the windings connected to buses k, j and l, respec-
tively. The considered voltages and currents are also indicated in
the circuit.

The voltage drop v1,4 between nodes 1 and 4 is given by:

LT1

di1,4
dt

= −RT1 i1,4 + v1,4 (15)

where:

v1,4 = v1 − v4 (16)

In addition:

v1 =
(

1/m1
)

vk (17)

Substituting (17) in (16), one obtains:

v1,4 = vk
m1

− v4 (18)

Substituting (18) in (15), one obtains:

LT1

di1,4
dt

= −RT1 i1,4 + vk
m1

− v4 (19)

Analogously, one has:

LT2

di2,4
dt

= −RT2 i2,4 + vj
m2

− v4 (20)
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