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a  b  s  t  r  a  c  t

Low  voltage  direct current  (LVDC)  is  a promising  technology  for future  power  distribution  grids  and  smart
grids applications.  Power  flow  in these  grids  is  a non-linear  problem  just  as its counterpart  AC.  This  paper
demonstrates  that,  unlike  in  AC grids,  convergence  and  uniqueness  of the  solution  can  be  guaranteed  in
this  type  of grid  under  well  defined  practical  considerations.  The  result  is  neither  a linearization  nor  an
approximation,  but  an  analysis  of the  set  of non-linear  algebraic  equations,  which  is valid  for  any  LVDC
grid  regardless  its size,  topology  or  load  condition.  Computer  simulation  corroborates  the  theoretical
analysis.

©  2017  Elsevier  B.V.  All  rights  reserved.

1. Introduction

1.1. Motivation

Low voltage direct current (LVDC) is a promising technology
for urban distribution systems, micro-grids, data centers, traction
power systems and shipboard power systems [1]. It presents advan-
tages in terms of reliability, efficiency, controllabiliy, power density
and loadability [2,3].

An LVDC grid consists of a bidirectional AC/DC converter placed
in the main substation to which it is connected different loads and
generators as depicted in Fig 1 . Different elements can be con-
nected to an LVDC grid such as renewable energy resources, energy
storage, electric vehicles and controlled loads. These elements are
integrated to the grid through a power electronic converter (i.e. a
constant power terminal). Consequently, the model of the LVDC
grid is non-linear and requires a power flow study.

The existence and uniqueness of the solution are, obviously, sine
qua non conditions for rigorous analysis of the stationary state of a
grid and for determining an equilibrium point in small signal sta-
bility studies [4–6]. These are characteristics of the set of algebraic
equations and not of the method used to find a solution. However,
it is often difficult to determine if a solution of a set of non-linear
equations, such as those of the power flow, is unique. A non-linear
problem could give several solutions; in some cases, the solution
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may  not even exist and hence uniqueness must not be taken for
granted.

1.2. DC power flow vs power flow in LVDC grids

It is important to emphasize that power flow in LVDC grids is dif-
ferent from the well known DC power flow in conventional power
systems [7]. The former is a power flow in a grid which is actually
DC and incorporates constant power terminals; while the latter is
a linearization of the power flow equations in AC grids which, due
to a pedagogic analogy, is named in this way. The most important
difference is that LVDC power flow equations define in a non-linear,
non-affine and not convex space due to the presence of power elec-
tronic converters with constant power controls. In addition, the
state variables are voltages and not angles which actually does not
exist in LVDC grids.

1.3. Brief state of the art

There is an increasing interest in LVDC grids and related subjects
such as DC microgrids and DC distribution. Several studies have
been done about the feasibility of these technologies. For instance,
[1] presented a complete description of the potentialities of LVDC
grids as well as their challenges. Potential pathways for increased
use of DC technology in buildings was  considered in [3]. A more
practical approach was presented in [2] where a case study for a
large distribution network was  considered. These studies show that
LVDC grids are interesting not only from the research/theoretical
point of view but also from the practical point of view.
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Fig. 1. Example of an LVDC system for urban area applications.

Power flow analysis in LVDC grids has been presented as an
extension to well known methodologies for AC grids such as
Newton–Raphson or Gauss–Seidel [8]. Power flow sensitivities
have been also studied in [9]. However, available studies in the
literature are based on numerical performance but there are no the-
oretical studies about uniqueness of the solution. In these studies,
uniqueness is taken for granted without mathematical demonstra-
tion in spite of the fact that a non-linear problem could give several
solutions. To the best of the author’s knowledge, this problem has
not been addressed in LVDC grids. The problem has been recently
studied in AC power distribution [10]. However, more research is
required in this direction.

1.4. Contribution and scope

This paper demonstrates the existence and uniqueness of the
solution of the power flow in LVDC grids. This result is general since:
(1) it is independent of the numerical method, (2) it is independent
of size and load condition of the LVDC grid and (3) it is valid for
any topology of the LVDC grid. A computational simulation demon-
strates the theoretical analysis using a successive approximation
method.

Comparisons of the computational performance of different
algorithms are beyond of the scope of this paper in order to main-
tain the generality of the main result. Computational performance
depends on many factors such as the implementation of the algo-
rithm, programming language and size of the grid.

1.5. Organization of the paper

The paper is organized as follows: Section 2 presents the basic
formulation of the power flow in LVDC grids from a practical
context. Next, Section 3 demonstrates the main theoretical result
followed by numerical simulations in Section 4. Finally conclusions
and references are presented.

2. Power flow in LVDC grids

The lack of reactive power and angles in LVDC grids allows some
simplifications of the mathematical formulation. Nodes are clas-
sified according to the type of control, namely: constant voltage,
constant power and constant resistance. Constant voltage termi-
nals include the main substation converter and any converter
along the grid which can maintain the voltage. Other converters in
the grid must be represented as constant power terminals. These
include renewable energy resources, energy storage devices and
controlled loads, among others. Constant resistance terminals are
linear loads as well as step nodes (i.e. nodes without generation or

load). Droop controls can be considered as a linear combination of
a constant power and a constant resistance terminal [11,12].

2.1. Mathematical formulation

Let us consider an LVDC grid as a set of nodes represented by
N  = {1, 2, . . .,  N}, which in turns is subdivided into three nonempty
and disjoint subsets N  = {V, R, P} according to the type of terminal,
namely: constant voltage (V), constant resistance (R) and constant
power P. There is usually only one constant voltage terminal but the
methodology can be applied to a more general case with multiple
voltage-controlled terminals. Branches are represented as a set E =
N  × N  with an associated constant resistance.

Nodal voltages and currents are related by the admittance
matrix G ∈ R

N×N as follows:⎛
⎜⎝
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In this case, VV is known and IR is given by (2)

IR = −DRR · VR (2)

where DRR a diagonal matrix that includes admittances of constant
resistance terminals. That is, for each constant resistance terminal
dkk = 1/rload. Notice this matrix can be singular (e.g. in the case of
step nodes). Eq. (2) is used to reduce the size of the set of algebraic
equations:

VR = −(DRR + GRR)−1 · (GRV · VV + GRP · VP) (3)

Power-controlled terminals are associated with the following
non-linear equation

PP = diag(VP) · IP (4)

Which in turn can be written as follows

PP = diag(VP) · (JP + BPP · VP) (5)

with

JP = (GPV − GPR · (DRR + GRR)−1 · GRV) · VV

BPP = GPP − GPR · (DRR + GRR)−1 · GRP

Therefore, the state of the LVDC grid can be completely estab-
lished by solving (6).

VP = B−1
PP · (diag(VP)−1 · PP − JP) (6)

In order to analyze (6), let us define a map  T : R
P → R

P as given
in (7):

T(VP) = B−1
PP · (diag(VP)−1 · PP − JP) (7)

Notice that T is a non-linear map  and as aforementioned, unique-
ness of the solution must not be taken for granted.

2.2. Practical considerations

Let us consider the following few practical assumptions:

1 the graph is connected (i.e. there are no islands in the feeder)
2 there is at least one constant power terminal and one constant

voltage terminal
3 feasible voltages remain in a given interval

0 < vmin ≤ v ≤ vmax (8)

4 short circuit currents are higher than normal operation currents
for all constant power terminals.
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