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a  b  s  t  r  a  c  t

This  paper  presents  a  novel  method  based  on midpoint-radius  interval  arithmetic  to  deal  with  uncer-
tainties  in  the  power  flow  problem.  The  proposed  technique  aims  at finding  a  balance  between  accuracy
and  computational  efficiency.  It relies  on an  original  decoupling  of the  interval  power  flow  equations  into
midpoint  and  radius  parts.  This representation  allows  avoiding  the  factorisation  of  an  interval  Jacobian
matrix.  Moreover,  the proposed  formulation  is  combined  with  an  optimisation  problem  in  order  to  pre-
vent  overestimation  of  the interval  solution  while  preserving  uncertainty.  The  proposed  technique  proves
to  be more  efficient  than  existing  approaches  based  on  interval  and  affine  arithmetic  and  as  accurate  as
the conventional  Monte  Carlo  method.

© 2017  Elsevier  B.V.  All  rights  reserved.

1. Introduction

1.1. Motivations

Uncertainty is inherent to any physical systems. This is partic-
ularly true for power systems, where uncertainty can have several
causes, e.g., imprecise demand forecast, price variability, renew-
able energy generation, economic growth, industry placement, and
line aging [1,2]. Failing to properly account for uncertainties can, in
some cases, lead to erroneous estimations or insecure operating
conditions. Therefore, a reliable tool to handle several possible sce-
narios and combinations of scenarios is crucial to provide a clear
understanding of the expected behaviour of the grid. This paper
focuses on how to properly account for uncertainties in power flow
(PF) analysis.

1.2. State of art

In the literature, uncertainty in PF analysis has been handled
mainly by two types of methods: probabilistic and interval-based.

The probabilistic approach relies on solving multiple instances
of the PF problem for several (typically randomly generated) possi-
ble scenarios, and then aggregate results. The Monte Carlo method
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is the most common probabilistic approach. The Monte Carlo
method is adequate for off-line analysis and is assumed to yield the
“correct results”, provided that a sufficiently large amount of sam-
ples are considered [3]. However, the computational burden of the
Monte Carlo method can be unsuitable for practical purposes, real-
time analysis and preventive and/or corrective control actions [4].
For an extensive survey of probabilistic PF methods, the interested
reader can refer to [3,5].

Interval-based methods rely on using intervals to model the sys-
tem, according to a possibility distribution obtained from experience
and historical data. Sentences such as “load between 0.5 and 1 pu”
and “generation around 0.9 pu” can be easily translated into inter-
vals. In [6], the interval Newton method is directly applied to a
case of PF analysis with 5 buses, assuming small uncertainty in the
nodal injected powers. In [1], the authors use affine arithmetic to
keep track of correlation between inputs, a feature that is absent
from traditional interval arithmetic. While interval arithmetic has
a low computational burden with respect to probabilistic methods,
the major drawback is its tendency to overestimate the intervals
of the solution, especially if input parameters are characterised by
wide intervals. Wide intervals can make the solution either of little
practical interest or useless.

1.3. Contributions

The technique proposed in this paper deals with uncertainty
in PF analysis and balances computational burden and accuracy
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of results. With this aim, we utilise a midpoint-radius representa-
tion of intervals and separate the solution of the PF problem into a
standard PF problem for the midpoint and an interval problem for
the radius. The latter is solved through a carefully designed opti-
misation problem, where the constraints ensure that the solution
reflects all the uncertainty of the input, while the objective func-
tion helps to prevent overestimation. The concept of linking the
numerical results with uncertainty in the input data is borrowed
from backward error analysis [7].

The proposed technique enhances the one presented in [8]
where the midpoint and radius problems were solved together,
thus leading to a higher computational burden and lower accuracy
than the technique proposed in this paper.

The proposed method is tested on the IEEE 57 bus test case sys-
tem, proving to yield results as accurate as the Monte Carlo method.
A study of the computational burden of analogous methods is per-
formed in order to show that the proposed method is competitive
with state-of-the-art interval-based techniques and much more
efficient than the Monte Carlo method.

1.4. Organisation

The remainder of the article is organised as follows. Section 2
reviews probabilistic and interval-based approaches to deal with
uncertainty in PF analysis. Section 3 describes the proposed interval
method for PF analysis. Section 4 presents a study of the com-
putational complexity of various methods for PF analysis with
uncertainty. Section 5 presents a case-study including a compar-
ison in terms of accuracy with the Monte Carlo method. Finally,
Section 6 duly draws conclusions and outlines future work.

2. Uncertainty in PF analysis

This section reviews two main approaches used for dealing with
uncertainty in PF analysis. These are the probabilistic approach and
the interval-based approach.

2.1. Probabilistic approach

The probabilistic approach models uncertainty as random vari-
ables with a certain probability distribution. The above relies on
statistical data to obtain the probability distribution of the inputs.
A probabilistic PF model is defined by extending the PF equations
to random variables. The equations are solved to obtain the dis-
tribution of the unknown variables. The solution method can be
numerical, such as Monte Carlo method, or analytic. In the follow-
ing, we focus exclusively on the Monte Carlo method as it is the
most commonly used and is considered to be the most accurate
approach [3].

Monte Carlo method. This is a numerical method to approxi-
mate the distribution of an unknown random variable. The method
relies on the law of large numbers and sampling and consists of the
following steps:

1. Create a number of scenarios by taking samples of known ran-
dom variables.

2. For every scenario, compute a sample of the unknown variables
using a deterministic model, e.g., simulation.

3. Aggregate the results into some relevant parameters.

Algorithm 1 illustrates the Monte Carlo method for probabilistic
PF analysis. The algorithm computes the sample mean vector of bus
voltages v, given the distribution functions of bus power injections
FS(·). The function rng(·) returns a random number in the interval
[0, 1], and is used for sampling purposes.

Typically, a high number of samples is needed to achieve accu-
rate results. For this reason, the method can become cumbersome if
applied to real-world problems involved in the operation of power
systems. Common applications are power system planning and reli-
ability analysis [9], or as a validation tool to test other techniques.
Several examples can be found of the latter, in which the results
from Monte Carlo method are considered the “correct” ones, e.g.,
[10,11].

Algorithm 1. Monte Carlo method for probabilistic PF analysis.

Input: Number of samples, ns . Distribution functions of bus power injections,
FS (·). Deterministic PF equations, s = f (v).
Output: Sample mean of bus voltages, v.

1: for h in 1, . . ., ns do
2: r = rng()
3: s(h) = F−1

S (r) {Sampling}
4: v(h) = f −1

(
s(h)

)
{Deterministic PF}

5:  end for
6: v = 1

n

∑
h
v(h) {Sample mean}

2.2. Interval-based approach

The interval-based approach models uncertainty as intervals
without a probability distribution. This allows using expert knowl-
edge in the definition of input intervals, in case statistical data is
lacking. An interval PF model is defined by extending the PF equa-
tions to interval variables. The equations are solved in order to
compute interval bus voltages. These methods are self-validated,
as interval operations respect the property of isotonicity [12].

Interval-based Newton method. This is a method for bounding the
zeros of a differentiable function f ( · ) : R

n → R
n. Given an initial

interval guess [x](0), the method computes a series [x](k), k = 1, 2,
. . .,  such that,

x ∈ [x](0), f (x) = 0 ⇒ x ∈ [x](k) ⊂ [x](k−1) ⊂ · · · ⊂ [x](0). (1)

The method relies on the mean value theorem, which is applied
with vectors in the current interval. This leads to a new interval that
include all the zeros. However, the new interval might be overlap-
ping the current one. Therefore, both are intersected in order to
compute the next interval in the series. Given the current interval
[x](k), the mean value theorem states that,

f (x) ∈ f (y) + Jf |
x ∈ [x](k) (x − y), ∀x, y ∈ [x](k), (2)

where Jf is the Jacobian matrix of f(·). Note that the Jacobian matrix

is evaluated on the whole interval [x](k). Thus, the result is an inter-
val matrix. Enforcing f(x) = 0, and choosing y as the midpoint of [x](k)

(denoted by x̌(k)), yields the following expression.

x ∈ x̌(k) −
(

Jf |
x ∈ [x](k)

)−1
f (x̌(k)), (3)

which leads to the interval Newton iteration,

[x](k+1) = [x](k) ∩
(

x̌(k) −
(

Jf |
x ∈ [x](k)

)−1
f (x̌(k))

)
. (4)

The interval Newton method is applied to interval PF analysis in
the same way as the Newton–Raphson (NR) method is applied to
deterministic PF analysis. This idea was  introduced in [6].

Note that the interval Newton iteration requires inverting an
interval matrix (or, alternatively, solving a system of interval lin-
ear equations). Typical factorisation techniques include interval
Gaussian elimination and the Krawczyk’s method [13]. However,
depending on the structure of the matrix, these methods can either
not converge, take too long or simply deliver an impractical result
[14].

Affine arithmetic method. A novel method for interval PF analysis
has been proposed in [1]. The method relies on affine arithmetic,
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