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a  b  s  t  r  a  c  t

This  paper  illustrates  the  construction  of a  new  class  of iterative  solvers  for  power  flow  calculations
based  on  the  method  of Alternating  Search  Directions.  This  method  is fit  to  the particular  algebraic
structure  of the  power  flow  problem  resulting  from  the  combination  of  a globally  linear  set  of  equations
and  nonlinear  local  relations  imposed  by power  conversion  devices,  such  as  loads  and  generators.  The
choice  of the  search  directions  is  shown  to  be crucial  for  improving  the  overall  robustness  of  the  solver.  A
noteworthy  advantage  is  that  constant  search  directions  yield  stationary  methods  that,  in  contrast  with
Newton or Quasi-Newton  methods,  do  not  require  the  evaluation  of the  Jacobian  matrix.  Such directions
can  be elected  to  enforce  the  convergence  to  the  high  voltage  operative  solution.  The  method  is  explained
through  an  intuitive  example  illustrating  how  the  proposed  generalized  formulation  is able  to include
other  nonlinear  solvers  that  are  classically  used  for  power  flow  analysis,  thus  offering  a  unified  view on
the  topic.  Numerical  experiments  are  performed  on  publicly  available  benchmarks  for  large  distribution
and  transmission  systems.

©  2016  Elsevier  B.V.  All  rights  reserved.

1. Introduction

The power flow problem consists in determining the state
of a power system in terms of voltage magnitudes and phase
angles at each bus, for given load and generation profiles. This
can be achieved through the solution of a set of nonlinear power
equilibrium equations by means of a numerical iterative method.
Considerable research effort has been put into the development of
numerical techniques to solve this problem, many of which have
come to the point of being considered as “milestones” of power
system simulation and are now extensively used by the power
industry [1]. Nonetheless, the ever-evolving technological scenario
characterizing the power engineering domain demands for a con-
stant improvement of the numerical methods, in order to keep pace
with the new standards of robustness, computational speed and
reliability required in simulation tools. This idea is what motivates
the research work behind this paper.
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1.1. Related work

Historically, power flow studies started with Gauss–Seidel (GS)
type methods [2,3], Newton–Raphson’s methods (NR) [4,5], or fixed
point algorithms based on the admittance or impedance matrix, like
the Implicit Z bus method (IZB) [6–14]. Despite their flexibility and
low memory usage, GS methods have low convergence rates com-
pared to NR methods, who enjoy optimal quadratic convergence
but come with an increased computational cost due to the need
of assembling and solving the Jacobian system at each iteration.
The Implicit Z bus method has a good convergence rate and avoids
the problem of reforming a different linear system at each itera-
tion, however it has a less straightforward way  of handling voltage
control for PV nodes [15–17]. These three classes of solvers are all
extensively documented in the specialized literature [18].

A variety of formulations of NR have been developed in order
to address the problem of Jacobian update that is particularly criti-
cal in large problems for which the solution of the Jacobian system
by means of a direct solver becomes computationally expensive.
These include Newton–Krylov methods [19,20], Jacobian-free [21],
or partial Jacobian update variants [22] which use an approxima-
tion to the Jacobian matrix. Among the most popular approaches
is the Fast Decoupled Load Flow Method (FDLF) [23], providing an
approximation of the Jacobian based on practical properties of the
power flow problem. In this way  Newton’s method is reduced to
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a sequence of decoupled linear problems for the voltage magni-
tude and phase angle, whose matrices are kept constant throughout
the iterations. The theoretical background of this method has been
elucidated from a mathematical viewpoint in subsequent works
[24,25].

A major drawback of Newton’s and Quasi-Newton’s methods is
the inability to systematically select the operative solution among
the multiple possible solutions of the nonlinear set of equation gov-
erning the power flow. It is known that convergence behavior of
NR is strongly related to the choice of the initial guess solution
and that the basins of attractions of the different solutions have
fractal boundaries [26]. Traditional iterative solvers may  converge
to spurious non operative solutions or simply fail to converge in
some cases. The operativeness of the solution cannot be assessed
if not with an a posteriori stability analysis. This situation is espe-
cially critical when the system is close to its voltage stability margin.
Different alternatives exist to overcome this difficulty. One is rep-
resented by numerical continuation techniques [27,28], that allow
to trace power flow solution paths corresponding to different load
factors. Other methods are based on truncated Taylor expansions
[29–31] or analytical continuation like the more recent Holomor-
phic Embedding Load Flow Method (HELM) [32], relying on Padé’s
approximants. In these methods, if the starting solution used for
continuation is an operative one, it is possible to guarantee that
the path follows a branch of operative solutions up the incipient
voltage instability.

While these techniques are able to enforce the convergence to
the operative solution and are computationally fast, they have less
flexible modeling capabilities. For instance there are reported diffi-
culties in modeling PV nodes in IZB [33] or HELM [34], whereas this
is straightforward in NR method. One possibility is to include all
control actions, including voltage control and limit enforcement,
in an additional loop external to the power flow solution. This
inevitably leads to more iterations since for each control iteration
a power flow has to be solved. On the other hand, this strategy also
reflects more closely the actions of controllers and the way real
power systems are operated.

1.2. Contribution of the present work

With the present work we formulate the power flow iterative
solver within a new framework. This “family” of solvers is specifi-
cally tailored for the algebraic structure of the system of equations
arising from the formulation of the power flow problem, and is
defined by two free parameters that can be geometrically inter-
preted as search directions, as is explained later in this paper. The
proposed approach gives a unified formulation for a class of power
flow iterative methods. Indeed it is shown how some of the classic
methods can be obtained from specific choices of the search direc-
tions. A particular emphasis is put on the choice of search directions
that is capable to enforce the convergence to operative high voltage
solutions, while retaining a relatively simple structure of station-
ary and decoupled solvers, that is, without needing evaluation and
factorization the Jacobian matrix at each iteration.

1.3. Organization of the paper

The layout of the paper is organized as follows: the power flow
equations are reviewed in Section 2. Here the notation is also set to
make the present paper self contained. The development of the new
solver is illustrated in detail in Section 3. Examples are presented
in Section 4 where performance issues and treatment of voltage
controlled nodes are also discussed. Finally, conclusions are drawn
in Section 5.

2. Governing equations and notation

In the remainder of this paper the following notation is adopted:

• Regular capital symbols denote vectors while bold capital sym-
bols denote matrices, i.e. V ∈ C

n or Y ∈ C
n×n.

• The superscript * denotes the complex conjugate while the sym-
bol � denotes the Hadamard component-wise product of vectors
and ø denotes the component-wise quotient of vectors.

• YV denotes the matrix–vector product.
• The nodal admittance matrix including information on both the

grid topology and the characteristics of its power delivery devices
is represented by Y.

• The vectors S, V and I denote vectors whose components are com-
plex power source, voltage and injected currents respectively.

Writing Kirchhoff’s current law at any node the following alge-
braic linear system is obtained:

YV = I0 + I, (1)

where I0 is the vector containing the constant current. Currents,
voltages and powers are nonlinearly related through power balance
equations, which can be written in vector form as:

S = V � I∗. (2)

By incorporating Eq. (2) into (1), the following nonlinear system
is obtained:

YV = I0 + S∗øV∗, (3)

Eq. (3) is referred to as the injected current form. Multiplying both
right and left hand side by V one obtains the power form:

V∗ � [YV − I0] = S∗ (4)

In these formulations the slack node is transformed into equiv-
alent current sources at adjacent buses, and their contribution is
accounted for in the vector I0, while the corresponding complex
equation is eliminated from the system, for more details see [35,36].
Therefore, the Y matrix is in general a n × n complex matrix, while
voltages and currents are vectors of C

n, with n = Nb for single-phase
systems, or n = 3Nb for three-phase systems when Nb is the number
of buses in the network.

3. Proposed methodology

3.1. The method of Alternating Search Directions

Eq. (3) is the combination of linear global problem (1) and
nonlinear local constraints (2). In the derivation of the proposed
methodology, the first idea is to consider the augmented system
formed by Eqs. (1) and (2), instead of the primitive formulation (3),
as in [37].

In this framework, a single nonlinear iteration is conceived as the
combination of two steps that are obtained by pairing Eqs. (1) and
(2) with additional linear relations between voltages and currents,
expressing the so-called search directions.

At iteration l, for a given matrix  ̨ ∈ C
n×n and initial pair (V, I)[l],

an intermediate solution (denoted by superscript l + (1/2)) is found
from the linear system{

I[l+(1/2)] − I[l] = ˛(V [l+(1/2)] − V [l])

YV [l+(1/2)] = I0 + I[l+(1/2)]
. (5)



Download English Version:

https://daneshyari.com/en/article/5001341

Download Persian Version:

https://daneshyari.com/article/5001341

Daneshyari.com

https://daneshyari.com/en/article/5001341
https://daneshyari.com/article/5001341
https://daneshyari.com

