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a  b  s  t  r  a  c  t

This  paper  proposes  a deterministic  two-phase  mixed  integer  programming  (TPMIP)  approach  to  solve
the  non-convex  economic  dispatch  (ED)  problem  considering  ramp rate constraints,  valve-point  effect
(VPE), prohibited  operating  zones  (POZs),  transmission  loss, and  spinning  reserve  constraints.  In  the  first
phase, the  non-smooth  cost  function  induced  by  VPE  is  piecewise  linearized  and  the POZs  constraints
are  formulated  as  a set of mathematical  formulas  via a  mixed  integer  encoding  technique.  Then,  the
non-convex  ED problem  is converted  to  a mixed  integer  programming  (MIP)  problem  and  can  be solved
by  commercial  optimization  solvers.  In the second  phase,  based  on  the solution  obtained  in the  first
phase,  the  range  of  the  power  output  of  each  unit  is compressed  and  then  solve  the  MIP problem  again
to  make  a further  exploitation  for an  optimal  solution  in the  subspace  of  the  whole  solution  domain.  To
demonstrate  the  effectiveness  of TPMIP,  it is applied  to eight  test  systems  and  the  simulation  results  are
compared  with  those  obtained  by the  existing  methods  cited  in this  paper.  Numerical  simulations  have
verified  that  the proposed  method  provides  a comprehensive  framework  in  solving  the  non-convex  ED
problem.

© 2016  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Economic dispatch (ED) problem is a critical issue in power
system operation and control as it provides guidance for the eco-
nomic operation. The ED problem aims at determining an optimal
power output schedule of the committed units so as to minimize
the total cost of all committed units, while satisfying the operating
constraints and the demand.

Many methods have been proposed to solve the ED problem,
including mixed integer quadratic programming (MIQP) [1],
semidefinite programming (SDP) [2], nonlinear programming
(NLP) [3], and other gradient-based methods [4], which require
a quadratic cost function of each unit. However, in practice, wire
drawing effects occur when each steam admission valve in a tur-
bine starts to open and thereby have a rippling impact on the unit
input-output curve. This phenomenon is described as valve-point
effect (VPE) and it is often represented by a sinusoidal term on the
cost function. The inclusion of VPE makes the modeling of the fuel
cost function of the units more practical and accurate. In order to
consider the accurate cost function of each unit, the valve-point
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effect (VPE) should be taken into account in the realistic ED
model. Due to the valve-point effect, the input-output curve of
modern units inherently exhibits the non-linear and non-smooth
characteristics [5]. In addition, vibrations may  occur in a shaft
bearing and can be amplified while operating in certain regions
[6]. Consequently, the whole operating range of some units is not
always available. As a result, most of the gradient-based methods,
which require continuously differentiable cost functions and
convex solution space, are inapplicable to the ED problem with
valve-point effect (VPE) and prohibited operating zones (POZs).

Dynamic programming (DP) [7] imposes no additional require-
ments on the shape of the cost curve. However, with the dimensions
increasing, DP can not avoid getting trapped into a local optimum
and easily suffer from the curse of dimensionality. Reference [8]
presents an innovative distributed auction-based algorithm (AA)
to handle different types of non-convex ED problems. One of the
very few gradient-based methods considering VPE is the Maclaurin
series based Lagrangian method (MSL) [9], in which the sinusoidal
term is represented by Maclaurin series and then solved by the
Lagrangian method. Nevertheless, simulation results show that the
exploitation capability of AA and MSL  still needs improvement.

Compared with the gradient-based methods, the meta-heuristic
methods have no restrictions on the shape of the cost function and
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have a strong exploration capability in searching the non-convex
solution space. Many meta-heuristic methods have been success-
fully applied to the non-convex ED problem, including genetic
algorithm (GA) [5,6,10,11], particle swarm optimization (PSO)
[12–16], evolutionary programming (EP) [17], differential evolu-
tion (DE) [18], firefly algorithm (FA) [19], tabu search algorithm
(TS) [20], harmony search algorithm (HS) [21], clonal algorithm
(AIS) [22], etc. To strengthen the exploitation capability, differ-
ent strategies are integrated into the meta-heuristic method to
form a hybrid method. In most of the hybrid methods, they often
include two phases. The first phase is to find a desirable region
in the solution space by using a meta-heuristic method and the
second phase is to refine the solution by another method. These
hybrid methods, which take advantages of both probabilistic and
deterministic characteristics, have been proved to be effective in
solving the non-convex ED problem, such as evolutionary program-
ming combined with sequential quadratic programming (EP-SQP)
[23], particle swarm optimization with sequential quadratic pro-
gramming (PSO-SQP) [24], new particle swarm optimization with
local random search (NPSO-LRS) [25], the hybrid algorithm consist-
ing of genetic algorithm, pattern search and sequential quadratic
programming (GA-PS-PSO) [26], a fuzzy adaptive particle swarm
optimization algorithm with Nelder-Mead (NM) simplex search
(FAPSO-NM) [27], etc. However, both the meta-heuristic and hybrid
methods often need to specify many problem-based parameters
and control parameters of the algorithm. Their main drawback is
lack of guarantee of convergence to a stable solution in finite time
and thereby they need to make stochastic analyses of the results
[1]. Besides, the spinning reserve constraints are not under con-
sideration in most of the above methods, which may  lead to the
instability of power system when a great fluctuation of the demand
or a sudden failure in a certain large capacity unit occurs. Thus,
the spinning reserve requirement should be embedded into the
realistic ED model [28,29].

In this paper, a deterministic two-phase mixed integer program-
ming (TPMIP) approach, which is based on linear approximation
and mixed integer encoding technique, is proposed to solve the
non-convex ED problem and the major characteristics of the pro-
posed TPMIP method are as follows:

• Four practical constraints, including spinning reserve constraints,
valve-point effect, prohibited operating zones, and transmission
loss, are considered in the non-convex realistic ED model.

• The proposed method uses the linear approximation and the
mixed integer encoding technique to convert the non-convex
ED problem into a mixed integer programming (MIP) problem,
and then the resulting problem can be solved by the commercial
solvers.

• A novel two-phase mechanism is firstly presented to expedite the
computational efficiency of the proposed TPMIP method.

The rest of this paper is organized as follows: (1) In Section 2,
the mathematical formulation of the non-convex ED problem is
presented. (2) In Section 3, TPMIP is proposed in detail. (3) In Sec-
tion 4, TPMIP is implemented on eight test systems. (4) In Section 5,
the conclusion of this paper is outlined.

2. Mathematical formulation of economic dispatch
problem

2.1. Objective function

When VPE is not considered, the cost function of each unit is
formulated as a second-order polynomial. The objective of the ED

problem is to minimize the total cost as follows:

min  FT =
n∑

i=1

Fi(Pi)

where Fi(Pi) = aiP
2
i

+ biPi + ci

(1)

When VPE is considered, the cost function of unit i can be
expressed as follows:

Fi(Pi) = aiP
2
i + biPi + ci + |ei sin(fi(Pi,min − Pi))| (2)

where FT is the total cost; Fi is the cost function of unit i; ai, bi, ci,
ei, and fi are the cost coefficients of unit i; Pi is the power output of
unit i; n is the total number of units.

2.2. Equality and inequality constraints

2.2.1. Power balance equation
The total power output should be equal to the demand plus the

transmission loss. Therefore, the power balance equation should be
as follows:

n∑
i=1

Pi = Pload + Ploss (3)

where Pload is the demand and Ploss is the transmission loss. Based
on the Kron’s loss formula, Ploss can be represented as a function of
the power outputs combined with the B coefficients as follows:

Ploss =
n∑

i=1

n∑
j=1

PiBijPj +
n∑

i=1

Bi0Pi + B00 (4)

where the B coefficients, including Bij, Bi0, and B00, are used to cal-
culate the transmission loss [4]. Bij is a coefficient associated with
Pi and Pj. Bi0 is only associated with the power output of unit i and
B00 denotes a constant.

2.2.2. Power output constraints
The power output of each unit has its lower bound and upper

bound as follows:

Pi,min ≤ Pi ≤ Pi,max (5)

where Pi,min and Pi,max are the minimum and maximum power
outputs of unit i, respectively.

2.2.3. Ramp rate constraints
The power output of unit i is affected by its ramp rate constraints

as follows:

−DRi ≤ Pi − P0
i ≤ URi (6)

where P0
i

is the previous power output of unit i. DRi and URi are the
down and up ramp rate limits of unit i, respectively.

When (5) and (6) are considered at the same time, they can be
rewritten as follows:

max{P0
i − DRi, Pi,min} ≤ Pi ≤ min{P0

i + URi, Pi,max} (7)

2.2.4. Prohibited operating zones constraints
In practice, due to physical operation limitations, some units

may  have certain prohibited operating zones. The POZs constraints
can be represented as follows:

Pi ∈

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Pa
i,1 ≤ Pi ≤ Pb

i,1 or

Pa
i,k

≤ Pi ≤ Pb
i,k

or

· · ·
Pa

i,mi
≤ Pi ≤ Pb

i,mi

,
k = 1, 2, . . .,  mi

i ∈ �
(8)
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