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a  b  s  t  r  a  c  t

This  paper  proposes  the  use of  the  digital  Taylor–Fourier  transform  (DTFT)  for  identifying  low  frequency
oscillations  in  power  systems.  The  implementation  has  been  performed  on  the  CompactRIO  (cRIO)  plat-
form and  its  associated  libraries,  using  a computational  efficient  DTFT  calculation.  The  platform  generates
the  signal  spectral  decomposition,  yielding  mono-component  signals  extracted  by  a  filter  bank.  The spec-
tral analysis  is  accomplished  by  means  of  a sliding-window  that  advances  each  new  sample,  providing
reconstructed  signals,  their  amplitude  estimates,  and  information  of  their  instantaneous  damping  and
frequency.  The  identification  process  is applied  on  both  simulated  and  actual  signals.  Experimental  results
confirm  the  proposition’s  performance,  precision,  and  reliability.

©  2016  Elsevier  B.V.  All  rights  reserved.

1. Introduction

The real-time identification of low frequency oscillations
(damping and frequency) through phasor measurement strategies
represents a challenge for power systems monitoring. Nowadays,
it is possible to take advantage of advanced hardware, includ-
ing phasor measurement units (PMUs), fast microprocessors and
newfangled algorithms that allow supervising the power sys-
tems operation [1]. The identification process assumes that the
PMUs data are processed timely, accurate, and effectively, so that
it extracts the maximum information about the oscillatory phe-
nomenon evolution, as well as trends on the system behaviour.

Low frequency oscillations (LFOs) may  arise for different rea-
sons, and have been extensively studied. Their presence in power
system threaten the system’s stability [2,3]. Therefore, because the
impact of LFOs over the stability, their rapid and effective iden-
tification are required in order to take the corresponding actions
for preventing ulterior consequences. Typically, LFOs lie in the
range 0.1–2.0 Hz and may  be divided into two categories: (i) local,
and (ii) inter-area.  The former one varies within the interval [1.0,
2.0] Hz, while the latter one ranges within [0.1, 1.0] Hz. Because
power systems become the interconnection of many sub-systems,
the inter-area modes are of main concern, since they may  involve

∗ Corresponding author. Tel.: +52 3334412136; fax: +52 3337773609.
E-mail addresses: mrarrieta@gdl.cinvestav.mx (M.R.A. Paternina),

jramirez@gdl.cinvestav.mx (J.M. Ramirez), azamora@gdl.cinvestav.mx
(A.Z. Méndez).

large geographical zones. Thus, modal identification represents a
remarkable issue in power system [4–8].

Several approaches have been developed for the LFOs identifi-
cation hinged on PMU  measurements. Some relevant techniques
are discussed in [3–9]. Among these, the following are highlighted:
(i) Fourier transform (FT); (ii) Hilbert–Huang transform (HHT); (iii)
Prony analysis (PA); (iv) Eigensystem Realization Algorithm (ERA);
(v) Matrix Pencil (MP); (vi) Kalman filter. Some of these techniques
have been implemented under the North American SynchroPhasor
Initiative (NASPI), especially in the oscillation monitoring sys-
tem [8], where the Prony, Matrix Pencil, and Hankel Total Least
Square algorithms are used for the analyses. Thus, for the power
engineering community it is relevant to develop measurement
and instrumentation systems in order to study the low frequency
oscillations’ phenomena. The use of information related to the oscil-
latory phenomena and the ability to provide their estimates in
real-time, may  be quite valuable for power system’s operators.

On the other hand, power system monitoring has been profited
of the signal processing techniques evolution and the advancement
of processing devices, making feasible the real-time imple-
mentation [9]. Currently, the digital signal processing may be
accomplished using a digital signal processor (DSP) [10,11], a field
programmable gate array (FPGA) [12], or a general-purpose micro-
processor [13], according to the application’s requirements. In
this paper, for identifying electromechanical oscillations [14–16],
the implementation has been embedded into a FPGA and micro-
processor platforms in a reconfigurable-embedded chassis with
integrated real-time controller known as compactRIO [12]. Besides,
in this proposal a continuous phasor measurement strategy is

http://dx.doi.org/10.1016/j.epsr.2016.04.021
0378-7796/© 2016 Elsevier B.V. All rights reserved.

dx.doi.org/10.1016/j.epsr.2016.04.021
dx.doi.org/10.1016/j.epsr.2016.04.021
http://www.sciencedirect.com/science/journal/03787796
http://www.elsevier.com/locate/epsr
mailto:mrarrieta@gdl.cinvestav.mx
mailto:jramirez@gdl.cinvestav.mx
mailto:azamora@gdl.cinvestav.mx
dx.doi.org/10.1016/j.epsr.2016.04.021


Please cite this article in press as: M.R.A. Paternina, et al., Real-time implementation of the digital Taylor–Fourier transform for identifying
low frequency oscillations, Electr. Power Syst. Res. (2016), http://dx.doi.org/10.1016/j.epsr.2016.04.021

ARTICLE IN PRESSG Model
EPSR-4678; No. of Pages 8

2 M.R.A. Paternina et al. / Electric Power Systems Research xxx (2016) xxx–xxx

assumed, enabling to detect slow events in the electrical grid. Pre-
viously, such strategy has been used to estimate a blood pressure
oscillometric signal with low frequency components in [17]. Also,
its performance under fast transient events has been explored in
[18]. Likewise, it has been proposed for measuring synchropha-
sors, frequency, and rate of change of frequency (ROCOF) in power
systems [19], and it has been implemented for phasor estimation
purposes [20].

Respect to different implementations [5–9], this proposal
reduces the sampled data collected over a time-window, using a
window of several seconds instead of minutes [9], while fictitious
modes are not introduced [5,21]. Experimental results for actual
and generated signals are exhibited. Thus, this paper extends the
DTFT applicability for frequencies lower than 1 Hz, instead of apply-
ing it just for measuring syncrophasors at nominal frequency [20];
this proposal highlights the phasor measurement technique, which
is founded on the Taylor–Fourier transform.

The novelty of the paper is to provide an alternative analysis tool
for monitoring and extracting modal information from the power
system’s oscillating signals, utilizing a novel technique known as
Taylor–Fourier-Transform (TFT). The paper introduces the compu-
tational aspects for its real-time implementation. That is attained
by handling the TFT depending on the modes of concern in order
to provide the best frequency decomposition, achieving the precise
estimation of frequency and damping.

2. Taylor–Fourier transform

For identifying electromechanical modes [21], the digital
Taylor–Fourier transform (DTFT) is described in the following. The
DTFT’s expands the Fourier subspace by incorporating Taylor terms
greater than zero. Thus, the Taylor–Fourier subspace is shaped, and
it is spanned by using the vectors of the Fourier matrix as Taylor
terms’ harmonic modulators included in the Kth Taylor polynomial.

2.1. Taylor–Fourier subspace

Signals s projected onto the Taylor–Fourier (TF) subspace are
expressed by the following linear combination,

ŝ = B�̂ (1)

where B is the Taylor–Fourier matrix for N filters,

B = ( T E1T Ē
1
T E2T Ē

2
T · · · ENT Ē

N−1
T ), (2)

T stands for the first K + 1 Taylor terms defined in (3); matrix Ei

includes the samples of the first Fourier vector on its diagonal
Ei = diag(ej2�fit), where fi is the ith frequency of concern. Vector �̂
contains up to the Kth derivative of the dynamic phasor and their
complex conjugates,
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tn = nTs, where n ∈
[
−C N

2 , C N
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]
, and C is the number of fundamental

cycles taken into account. Thereby, the signal ŝ is the linear com-
bination of the first (K + 1) time derivatives, corresponding to each
Taylor term for the defined set of harmonics. That is, each matrix
Ei in (2) is modulated by each time derivative in the Taylor–Fourier
coefficients �(K) in (4), at its corresponding harmonic frequency.
Then, signal s is projected towards the Taylor–Fourier subspace as
ŝ, Fig. 1. This is done in order to provide the best approximation
through the TF estimates.

Fig. 1. Projection onto the Taylor–Fourier subspace.

2.2. Digital Taylor–Fourier transform

Once the Taylor–Fourier subspace is shaped, the filtered algo-
rithm is performed using the least-squares solution, and it may be
concluded that its best Taylor–Fourier estimates become [14–17],

�̂ = [BHB]
−1

BHs = B†s, (5)

where B is expressed as in (2).
The DTFT computational complexity is reduced because B

includes just the frequencies of concern [17,21]. From (5), the best
Taylor–Fourier coefficients are estimated for each of such frequency
in (2). In this paper, the DTFT is implemented using expressions
(1)–(5), with K = 3, C = 4, the frequencies of concern, and the samp-
ling frequency.

On the other hand, the signal reconstruction is carried out
through the synthesis Eq. (1) [14], while the amplitude estimates
are expressed by,

â(t) = 2|�̂| (6)

From (1) the analytic representation of the reconstructed signal
ŝCN is computed. Each component ŝj may  be decomposed as

ŝj = Re{ŝj} + Im{ŝj} (7)

where Re{ŝj} is the real part of ŝj , denoted by sRe, and Im{ŝj} is the
imaginary part of ŝj , denoted by sIm. Therefore, the instantaneous
frequency may  be numerically calculated via the Hilbert transform
using (8) [22],

f̂j(t) = sRe(t) ∗ ṡIm(t) − sIm(t) ∗ ṡRe(t)

2�(s2
Re(t) + s2

Im(t))
(8)

From the time derivative, the phase ϕ̂j(t) and its derivative ̂̇ϕ(t)
are estimated by (9) and (10). These expressions are used for the
frequency estimation through the DTFT in (11),

ϕ̂j(t) = ∠�̂ (9)

̂̇ϕ(t) = Im{̂�̇e−i ϕ̂j(t)}
â(t)

(10)

f̂j(t) = fj +
̂̇ϕ(t)
2�

(11)

The instantaneous damping for the jth mode is computed taking
into account [22–24]. It is defined as the change of the amplitude
over time. If the instantaneous damping value is negative, it means
that its amplitude is growing,

�̂j(t) ≈ −
̂̇aj(t)

âj(t)
, (12)
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