
Electric Power Systems Research 144 (2017) 127–135

Contents lists available at ScienceDirect

Electric  Power  Systems  Research

j o ur na l ho mepage: www.elsev ier .com/ locate /epsr

Review

Distributed  optimization  approaches  for  emerging  power  systems
operation:  A  review

Yamin  Wanga, Shouxiang  Wangb, Lei  Wua,∗

a ECE Department, Clarkson University, Potsdam, NY 13699, USA
b Key Laboratory of Smart Grid of Ministry of Education, Tianjin University, Tianjin 300072, China

a  r  t  i  c  l  e  i  n  f  o

Article history:
Received 11 August 2016
Received in revised form 10 October 2016
Accepted 29 November 2016
Available online 5 December 2016

Keywords:
Distributed optimization
Distributed economic dispatch
Distributed optimal power flow
Distributed unit commitment

a  b  s  t  r  a  c  t

Independent  system  operators  (ISO)  and  regional  transmission  organizations  (RTO)  adopt  centralized
optimization  approaches  for the  optimal  operation  of power  systems,  which  collect  all  required  informa-
tion and  perform  centralized  operation  decisions  at the  central  controller.  As  the  size  of  power  systems
expends  and more  flexible  and  distributed  resources  from  the  demand  side  are  being  involved  in  power
systems,  such  a centralized  framework  raises  computation  and  communication  concerns.  Distributed
optimization,  as  an  alternative  approach  to  solve  challenges  of  the  centralized  optimization  mechanism,
has  attracted  increasing  attention  recently.  This  paper  reviews  existing  works  on distributed  optimiza-
tion  for  power  systems  operation.  We  first  discuss  various  distributed  optimization  algorithms  that  have
been studied  for power  systems  operation,  followed  by a  detailed  literature  review  on  adopting  such
distributed  algorithms  for major  power  systems  operation  applications  including  distributed  economic
dispatch  (ED),  distributed  AC-optimal  power  flow  (OPF),  distributed  unit  commitment  (UC),  and  other
distributed  applications.  The  advantages  and  barriers  of applying  each  distributed  algorithm  in practice
are  discussed.  Since  the  applications  of  distributed  algorithms  in  practical  cases  largely  rely  on  the high
performance  computing  (HPC)  platform,  the  application  of  HPC  techniques  on power  system  operation
problems  is also  reviewed.  Future  research  needs  for effectively  and  efficiently  promoting  the  practical
deployment  of  such  distributed  optimization  approaches  in  emerging  power  systems  are  identified.

© 2016  Elsevier  B.V.  All  rights  reserved.

Contents

1. Introduction  . . . .  .  . .  . . . .  . . .  .  . . . .  . . .  .  . . .  .  . . .  . . . . .  . . . . . . . . . .  . . . . . . .  .  . . . . . .  .  . . . . . .  . . . . . .  . . .  .  . . . . .  . . . . .  . . .  .  . . . .  . . . .  . . . . . . .  . . . . . . .  .  . . .  .  .  .  . . .  .  . . . . .  . . . .  .  . . .  . .  . 128
2. Distributed  optimization  methodology  review  . .  .  . . .  . . . .  . . . .  .  . .  . . .  .  .  . . . .  . .  .  . . .  . . . . . . .  .  . .  . . . .  . . .  .  . . . . . . . .  . . . . . . .  . . .  . . . .  . . . . . .  .  .  . . .  .  . .  .  . .  . .  . .  .  . .  . . .  . . . .  129

2.1.  Generator-based  decomposition  with  price/cost  information  exchange  .  . . . . . .  .  . . . .  .  . .  . .  . . .  . . .  . .  .  . . . .  .  . .  .  . . . . .  .  .  . . . .  .  . .  .  . .  . . . . . . . . . . .  . . .  . . .  . 129
2.2.  Geography-based  decomposition  with  physical  information  exchange  .  .  . . . .  .  . . . .  . . .  . . . . .  . . .  . . .  . . .  .  . . .  . . . . . .  .  . . . .  . .  . . .  . . . . . .  .  . .  .  .  .  .  .  . .  . . . .  .  . 129

3.  Distributed  optimization  applications  review  .  .  . . .  . . . .  . . . .  . . . . . .  .  .  .  . . . . . .  . . . . . . .  . . . .  . . . .  . . .  . .  .  . . .  .  . . . .  .  . . . . . . .  . . . . . . .  . . . .  . . . . . .  .  . . .  . .  .  . .  .  . .  . . . . .  . . . . . 130
3.1.  Distributed  ED/DC-OPF  . . . .  . . .  .  . . .  .  . . .  .  . . .  .  . .  .  . . .  . .  . .  .  . . . . .  .  .  . . . .  . . .  .  . .  . . . . .  . .  .  . .  .  . . .  .  . . .  . .  . . . . . .  . . . . . . .  .  . .  . . . . .  . . .  . .  .  .  . . .  . . . . . .  . . . .  .  .  . . . .  .  .  .  .  .  131
3.2.  Distributed  AC-OPF  . . . . .  .  . . .  .  . . .  .  . . .  .  . . .  . . .  .  . . .  . . .  .  . . . . . . .  . . . .  . . .  .  . . . . . . . . .  . . .  . . .  . . .  . . .  .  .  . . .  . . . .  .  . . . . . . .  . . . . . .  .  .  . . . . . . . . . . . .  .  . .  . .  .  .  . .  . .  . . . .  . . . .  131
3.3.  Distributed  UC  .  .  . . .  .  . . .  . . . .  . . .  .  . . .  . . . .  .  . .  .  .  . .  . .  . .  .  . .  .  .  . .  .  . . . . .  .  .  . . .  .  .  . .  . . .  .  .  . . . . . . . . . .  .  . . . . . .  . . . . . . . .  .  . . . . .  . . . . . . . .  . . . . . .  . .  .  .  .  .  . . . .  . . . . .  .  . . .  . . . 132
3.4.  Other  applications  of  distributed  algorithms.  .  .  . . .  . .  . .  . .  .  .  . . .  . . .  .  .  . . . . .  . . . . . . .  . . .  . . . . . . .  . . .  . . . .  .  . . . . .  . . .  . . . . .  .  .  .  . . . . . . . . . .  . .  .  .  . .  .  . .  . . . . .  . . . .  .  .132

4.  The  application  of  high  performance  computing  in  power  system  operations  . .  . .  . . . . . .  .  . . . . . . . . . .  .  .  . . . .  .  .  . . . .  . . .  .  . . . .  .  . . . . . .  . . .  .  . .  . .  .  .  . . . . . . . . .  . . . 133
5.  Future  research  needs  on distributed  optimization  for power  systems  operation  . . .  .  . . . .  . . .  . . . . .  . . .  . .  . . . . .  .  . .  .  . . . .  . . .  . . .  .  . . . .  . . . .  . .  .  . .  .  . . . .  . . .  . . . .  . 133

Abbreviations: ADMM,  alternating direction method of multipliers; AOP, alternating optimization procedure; ATC, analytical target cascading; APP, auxiliary problem
principle; BD, benders decomposition; DR, demand response; ED, economic dispatch; ISO, independent system operator; NYISO, New York ISO; CASIO, California ISO; ISONE,
ISO  New England; MISO, Midcontinent ISO; HPC, high performance computing; RTO, regional transmission organizations; PVM, parallel virtual machine; MPI, message
passing interface; GPU, graphics processing units; ICC, incremental cost consensus; KKT, Karush–Kuhn–Tucker; LR, Lagrangian relaxation; ME,  marginal equivalent; OPF,
optimal power flow; OCD, optimal condition decomposition; SCUC, security constrained unit commitment; UC, unit commitment; SDP, semi-definite programming; MINLP,
mixed-integer nonlinear problem.

∗ Corresponding author.
E-mail address: lwu@clarkson.edu (L. Wu).

http://dx.doi.org/10.1016/j.epsr.2016.11.025
0378-7796/© 2016 Elsevier B.V. All rights reserved.

dx.doi.org/10.1016/j.epsr.2016.11.025
http://www.sciencedirect.com/science/journal/03787796
http://www.elsevier.com/locate/epsr
http://crossmark.crossref.org/dialog/?doi=10.1016/j.epsr.2016.11.025&domain=pdf
mailto:lwu@clarkson.edu
dx.doi.org/10.1016/j.epsr.2016.11.025


128 Y. Wang et al. / Electric Power Systems Research 144 (2017) 127–135

5.1.  Operational  aspects  . . . .  .  . . .  . . .  .  . . .  . . . .  . . .  . . . . . . . .  .  . . .  . . . .  . . . .  . . . .  .  .  . . .  .  .  .  . . . . . .  .  . . . . .  . . . . . . . .  . . . . .  . . .  . . . .  . . .  . . . . .  . .  .  .  .  . . . . .  . . . .  .  .  .  .  .  .  .  . . .  . .  . .  .  . 133
5.2.  Computational  aspect  . . .  .  . . .  . . . . . .  .  . . . .  .  . .  . . . .  . . . . . . . . .  . . .  . . . . . . .  . . . .  .  . . .  .  . . . . . .  . . . . . . .  .  . . . . . . .  . . . . .  . . .  . . . . .  .  . . . .  .  . .  .  .  .  . . .  . . . . . .  .  . . .  . .  . . .  .  . . .  .  . 134
References  . .  . . . .  . . .  .  . . . .  . . . .  . . . .  .  . . .  .  . .  .  . . .  . . . .  . . .  . . . . .  . . .  .  . . .  . . .  . . . .  . . . .  . . .  .  . .  . . . .  . . .  . . . . .  .  . . . . .  . .  .  .  . . .  . . .  . . . . . . .  .  . . .  .  . . . .  .  .  . . . . .  . . . . . . .  .  .  .  . . .  .  . .  . . . .  .  134

1. Introduction

Optimal operation problems in different areas are commonly
solved in a centralized framework [1,2], and power system is not
an exception [3]. The centralized optimization framework has been
pervasively utilized in power systems operation, which collects all
required information and performs centralized operation decisions
at the central controller. However, such a centralized framework is
facing critical challenges in emerging power systems.

(1) The first one is the communication and computation challenges
for large-scale power systems. As the size of power systems
expends, the communication requirement for collecting rele-
vant information and the computational complexity for solving
large-scale optimization problems (e.g. security-constrained
unit commitment (SCUC)) will increase significantly. Ref. [4]
reported a total of 7 market disrupt events relevant to real-
time unit commitment (UC) and 35 disrupt events on real-time
economic dispatch (ED) from 16 January, 2012 to 15 February,
2012 in CAISO. The disrupt events were mostly caused by
software application failures and broadcast failures. Ref. [5]
analyzed the complexity for solving the SCUC problem of the
MISO market with 43,962 network buses and 1390 generating
units. When solving the SCUC problem in a centralized man-
ner, MISO will receive a matrix of data with 18,1474 rows and
48,9155 columns from different participants. Ref. [5] reported
that although the state-of-the-art solvers can efficiently han-
dle most cases, there are always occasions that the solvers have
difficulty in finding good solutions and require significant com-
putational time. This issue could become more severe as the size
of power systems increases and more flexible and distributed
resources from the demand side are being involved in power
systems. Ref. [6] compared the communication requirements of
the centralized and the distributed frameworks, and the simu-
lation result of an IEEE-118 bus system indicated that by moving
from the centralized topology to a decentralized one, the vol-
ume of communication reduced significantly from 275.68 to
195 million bit-hops.

(2) The second one is political and technical challenges for
the multi-area coordination. The growing interconnection of
regional electricity infrastructures and the large-scale integra-
tion of renewable energy demand for a coordinated multi-area
scheduling to achieve the overall reliability and economic effi-
ciency. For the multi-area coordination in which individual
regions are operated by different ISOs/RTOs, the centralized
optimization framework is unlikely to be practical because of
political difficulties for sharing interregional data and techni-
cal difficulties for building and solving complicated models. It
is also the case when coordinating an ISO with multiple utility
companies that operate distribution systems within the ISO ter-
ritory. In Ref. [7], the challenges of defining fair decision-making
strategies for individual system operators of the interconnected
electricity infrastructure were analyzed. Ref. [8] indicated that
roughly 50% of the time in 2009, power flows of tie lines con-
necting different ISOs were in the wrong direction. The main
reason is that each ISO is unwilling to disclose financial infor-
mation, system topology, or control regulations to the other
ISOs, and in turn transactions are scheduled independently and
cannot properly reflect the benefit to the entire system.

Considering these challenges, distributed optimization as an
alternative approach has drawn increasing attention. In the dis-
tributed optimization framework, a large-scale power system is
divided into small-scale sub-regions, and subproblems for individ-
ual sub-regions can be efficiently solved and effectively coordinated
to obtain a final solution to the original problem. In addition, local
subproblems can be solved simultaneously in a parallel manner
with the help of high-performance computing (HPC) techniques,
which can further enhance the computational performance of dis-
tributed optimization. HPC has been utilized in power system
applications for improving computation efficiency [9]. However,
due to difficulties in allocating tasks to individual processing units
through partitioning [10], HPC is mostly limited to solving large-
scale linear and non-linear equations in the transient stability
based contingency analysis [11–13] and the power flow calculation
[14,15]. Indeed, distributed optimization provides a decomposition
structure that perfectly suits for HPC. In distributed optimization
framework, local subproblems can be directly distributed to indi-
vidual processing units, e.g. individual cores of a multi-core CPU or
individual stand-alone computers in a cloud network of multiple
computers.

Another advantage of distributed optimization framework
is that the communication requirement could be significantly
reduced, since only limited information needs to be exchanged
among adjacent sub-regions and/or between sub-regions and the
central controller during the optimization procedure. Moreover,
compared to the centralized method, distributed optimization
framework is more flexible and adaptive with respect to the
changes of systems, especially in view that topologies of the elec-
tricity grid and the communication infrastructure in the smart grid
are likely to be more dynamic.

Over the years, various schemes have been explored for solv-
ing power system operation problems in a distributed fashion,
varying from the incremental cost consensus (ICC) based methods
[16–22] to Lagrangian relaxation (LR) based approaches [27–37].
Some approaches coordinate subproblems via price and cost sig-
nals [16–26], while others adopt physical information such as
voltage (magnitude and voltage angle) of boundary buses and tie-
line power flows [35,36,38,41–44]. In literature, performances of
various distributed models are usually compared to the central-
ized method, while the comparison among different distributed
schemes is limited. Indeed, various distributed algorithms could
present different convergence properties and require varying com-
munication supports (e.g., from a partially distributed scheme in
which individual subproblems communicate directly with a central
controller to a fully distributed scheme without a central coordi-
nator in which individual subproblems communicate directly with
each other). On the other hand, the mathematical essence of cer-
tain distributed schemes may  be the same and they would face
similar challenges in practical applications (e.g., auxiliary problem
principle (APP) [28] and alternating direction method of multiplier
(ADMM)  [29–31] are both augmented LR based approaches, and
the global convergence is guaranteed only if a problem is convex).

To the best knowledge of the authors, distributed optimiza-
tion algorithms have not been widely applied in practice for
power industry. One possible reason is that certain distributed
optimization algorithms with weak convergence properties may
require many iterations and in turn increase computational bur-
den beyond the limit of practical interest for power industry. Thus,
it is necessary to review state-of-the-art distribute algorithms with
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