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Abstract: In this paper we address the problem of fault resilient estimation for large-scale
systems, where the measurements are possibly corrupted due to faults of low-cost sensors.
As a toy application, we consider the problem of localization in Sensor Networks (SN). We
propose a distributed solution based on a recently developed generalized descent algorithm.
To cope with real-world applications, the algorithm we propose is suitable for an asynchronous
implementation and is numerically robust to non ideal communications, i.e., packet-losses. Under
mild assumptions, theoretical convergence of the algorithm is shown. The algorithm is compared
with a recently developed ADMM-based algorithm for robust state estimation.
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1. INTRODUCTION

Nowadays, large-scale and distributed cyber-physical sys-
tems, consisting of a multitude of sensors and “smart
agents” equipped with mild computational, communica-
tion and actuation capabilities, permeate our lives. Be-
cause of the size of the systems, low-cost sensors are
typically used. However the latter are more prone to ran-
dom failures, and consequently, one important challenge
to face is the systematic quantitative monitoring of the
system. Indeed, by affecting the collected measurements,
these failures eventually compromise the knowledge of the
system’ state, usually used for management and control.
In order to avoid this issue, two strategies can be followed:
(i) the development of suitable fault diagnosis algorithms
(see Paradis and Han (2007) for a survey on the topic),
consisting in detection, isolation and identification of the
fault; (ii) the design of fault resilient state estimation
procedures which are able to produce accurate outcomes
by automatically filtering out the outliers. These two ap-
proaches, which may eventually complement each other,
become necessary to implement reliable systems. However,
the possibly large scale of these systems makes central
monitoring strategies difficult and sometimes impossible to
implement. Thus, distributed solutions must be addressed.

Fault detection and bad data analysis have been largely
studied in the past. A lot of work has been done on the
static analysis of faults. The main idea behind static anal-
ysis is to process the measurements residuals through suit-
able hypothesis tests in order to detect the source of the
fault. In Chen et al. (2006) a distributed belief propagation
approach is proposed for WSN. With specific applications
to electrical power systems, in Korres (2011) a distributed
bad data analysis and detection procedure is shown, which
is based on the normalized residual test. Choi and Xie
(2011) propose a reduced model for distributed wide area

monitoring and a bad data analysis based on the y2-test.
A more recent branch of research regards the development
of fault diagnosis strategies for general networks of dy-
namical systems using sensors networks. In Franco et al.
(2006) a distributed hypothesis testing method, based on
a belief consensus technique to perform fault diagnosis, is
presented. Consensus is exploited in Boem et al. (2011)

as well, where the authors propose a distributed strategy
which is based on the combination of local fault estimators
to reach a common agreement on the fault detection. More
recently, Boem et al. (2013) propose a method based on
Pareto optimization. Finally, in Keliris et al. (2015) the
authors present a distributed scheme for the detection of
process and sensors faults for a certain class of nonlinear
discrete-time systems.

Regarding distributed state estimation, a vast amount of
literature can be found. However, historically, state esti-
mation does not deal with the presence of outliers. In order
to deal with bad data analysis, the standard approach
consists of two iterative steps: first, state estimation is
performed; second, hypothesis tests on the measurements
residuals are applied as done in Korres (2011); Choi and
Xie (2011). If a bad datum is detected, this is deleted
from the data-set and state estimation is performed again.
Hypothesis test on the new residuals can confirm or belie
the detection. In this sense, this approach iteratively com-
bines standard state estimation with static fault detection
procedures, to eventually lead to a fault resilient state
estimator.

A different approach is followed in Kekatos and Giannakis
(2013), where the authors propose an iterative distributed
strategy based on the classical ADMM algorithm to simul-
taneously solve the state estimation and the fault localiza-
tion in power systems.

In this work we are interested in developing a fault re-
silient state estimator rather than a fault detection scheme.
Conversely to what is done in Kekatos and Giannakis
(2013), where the problem is solved using a least square
approach with the introduction of an additional variable
to take into account the presence of outliers, we exploit
ideas coming from robust statistical analysis (Bloomfield
and Steiger, 2012; Huber, 2011) to formulate a suitable
convex problem. In particular, the choice of a “1—norm”-
based cost function, let us automatically filter out poten-
tial outliers in the measurements caused by sensors faults.
Inspired by the recent result in Todescato et al. (2015),
we provide a distributed algorithm to solve the problem.
Starting from a synchronous algorithm which assumes
perfect and ideal communications among sensor nodes,
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we modify it to deal with communication non idealities.
This is an important aspect since, in real-world large-scale
systems, ideal synchronous communications are not likely.
The algorithm we propose is based on an asynchronous
broadcast communication protocol. Numerically, the al-
gorithm is shown to be robust to communication non-
idealities. Under additional mild assumptions on the type
of communication non-idealities and on the curvature of
our prescribed cost function, convergence of the algorithm
is theoretically proven.

We apply the proposed algorithm in the framework of
sensors networks localization, even if the strategy applies
to a more general setup. Because of the well known perfor-
mance of the ADMM algorithm, we decide to compare the
algorithm with the strategy recently proposed in Kekatos
and Giannakis (2013). Since neither asynchronous nor
robust implementation of the algorithm in Kekatos and
Giannakis (2013) is provided, we suggest one. As shown by
the numerical simulations, compared to the ADMM, our
robust algorithm has the following features: (i) comparable
steady state estimation accuracy; (ii) in scenarios of highly
connected graphs, the algorithm is characterized by a
faster behavior for both the asymptotic and the transient
convergence rate; (iii) in general, conversely to the ADMM,
the transient evolution of our algorithm is monotonically
decreasing.

1.1 Mathematical Preliminaries

In this paper, G (V,€) denotes a directed graph, where
V = {1,...,N} is the set of vertices and € C V x V
is the set of directed edges. The graph G is said to be
bidirected if (i,7) € & implies (4,4) € £. An undirected
path in G consists of a sequence of vertices (i1, 42, ...,1)
such that either (ij,i;41) € £ or (ij41,i;) € € for every
j € {1,...,r — 1}. The bidirected graph G is said to
be connected if for any pair of vertices (i,7) there exists
a undirected path connecting ¢ to j. Given the directed
graph G, the set of neighbors of node i, denoted by N, is
given by NV; = {j € V| (i,j) € £}. Moreover, N;" = N; U
{i}. Given a directed graph G (V,&) with |&] = M, let
the incidence matriv A € RM*N of G be defined as
A = [ae;], where a.; = 1,—1,0, if edge e is incident on
node i and directed away from it, is incident on node
1 and directed toward it, or is not incident on node 1,
respectively. Given a vector v, with v” we denote its
transpose and with diag(v) the diagonal matrix where the
i-th diagonal element corresponds to the i-th element of
the vector v. The symbol I denotes the identity matrix of
suitable dimension.

2. PROBLEM FORMULATION

In the following, we consider a localization-type problem in
Sensor Networks (Mao et al., 2007) where, starting from a
set of noisy measurements, the agents’ goal is to estimate
their absolute positions. We want to develop a distributed
strategy where the agents are allowed to exchange in-
formation locally, i.e., between neighbors. Moreover, for
real-world applications, the algorithm must be robust to
communication non idealities, e.g., packet dropouts, while
being resilient to faulty measurements due to possible
sensors failures.

Consider a set of N agents/sensors V = {1,..., N}, where
each agent is described by a state vector x; € R™. For our
purpose and for ease of notation, we restrict the analysis
to the scalar case where n; = 1, Vi € V.By exploiting
graph theoretical tools, we model the SN by means of a

bidirected connected measurement graph G(V,E).
In the following we introduce the measurement model used
and we formally state the problem at hand.

2.1 Measurement Model € Fault Resilient Estimation

Assume that each agent collects a certain number of mea-
surements according to the measurement graph G. More
specifically, only two types of measurements can be col-
lected. The first are noisy relative distance measurements
with respect to neighboring agents, that is, for each i € V
and j € N;, node i measures

2
Wij ~ N(()?Uij) .
where afj denotes the relative measurement noise variance.

The second type of measurements is a noisy absolute
measurement of the form

bi = @i + wi,

bij = i — xj + wij,

w; ~ N(0,07) .
2

where o7 is the absolute measurement noise variance.
By collecting all the state variables in the vector x :=
[#1,...,2x5]T and by defining the measurement matrix
H and the vectors of measurements, b, and noises, w,
respectively as

w4 v e ] e [

the overall measurement model’
compact form as

b=Hx+w, w~N(0R), (1)

where R := diag({07}icv , {07, }(i.j)ce) denotes the noise
variance matrix.

In presence of outliers, however, some of the measurements
may be corrupted by an extra term, which has a prob-
ability distribution that highly differs from that of the
expected gaussian noise. By collecting these outliers in the
sparse vector o, the measurement model (1) becomes

b=Hx+w+o. (2)

Remark 1. (Measurement model). We underline that the
more general case of multidimensional positions can be
easily derived assuming independent measurements along
each dimension. Moreover, all the following analysis seam-
lessly applies to more general measurement model in which
the measurements are linear combinations of the states of
neighboring nodes. For instance, this is the case for the
state estimation in smart electric grids.

can be rewritten in

As above mentioned, we are willing to design a distributed
state estimation procedure which is fault resilient, that is
which is able to produce a reliable estimation by automati-
cally filtering out the outliers. Conversely to classical least
squares estimation, where the objective is to minimize the
weighted squared norm of the residuals, here we follow an
approach which is inspired from robust statistical analysis
(Bloomfield and Steiger, 2012; Huber, 2011), i.e., least
absolute estimation. The main idea is to make use of
suitable convex costs which, differently to the classical
quadratic costs, are locally quadratic only around the
origin while they become linear away from it. Thanks
to this, small residuals are weighted quadratically as in
the classical least squares. On the contrary, big residuals,
which usually identify the presence of sensors faults, are
weighted linearly. Consequently, the estimator weights and
“trusts” more the measurements corresponding to small

1 We underline the fact that we do not require all the nodes to
collect absolute positioning measurements. However, for absolute
positioning we require that at least one agent measures it. Conversely,
only relative localization is performed.
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