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a b s t r a c t

Using the expected detection delay (EDD) index to measure the performance of multivariate statistical
process monitoring (MSPM) methods for constant additive faults have been recently developed. This
paper, based on a statistical investigation of the T2- and Q-test statistics, extends the EDD index to the
multiplicative and drift fault cases. As well, it is used to assess the performance of common MSPM
methods that adopt these two test statistics. Based on how to use the measurement space, these
methods can be divided into two groups, those which consider the complete measurement space, for
example, principal component analysis-based methods, and those which only consider some subspace
that reflects changes in key performance indicators, such as partial least squares-based methods. Fur-
thermore, a generic form for them to use T2- and Q-test statistics are given. With the extended EDD
index, the performance of these methods to detect drift and multiplicative faults is assessed using both
numerical simulations and the Tennessee Eastman process.

& 2016 ISA. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Process maintenance and management require detailed process
operating information to determine not only whether the process is
operating normally, but also to determine the potential causes for
any observed problems. In modern industrial plants, multi-
dimensional, correlated process data are ubiquitous. The challenging
issue is how to determine if the data are informative enough to
monitor the process and which methods can be used to achieve this
objective. One approach to this problem is through process mon-
itoring and fault detection (PM-FD) that seeks to examine the in-
formation provided by routine operating data to determine the ex-
istence of problems and their probable root causes [1–3]. Early work
in this field was performed by Walter Shewhart in the early 1920s,
who developed Shewhart control charts that allowed for easy
tracking of the reliability of telephone transmission systems [2].
Afterwards, this approach spread to other physical processes, where
a n ormal distribution can be typically assumed. Shewhart charts are
easy to use and create, but are limited to univariate monitoring

which does not take into consideration any dependencies between
the monitored variables. More recently, the approach has been ex-
tended and improved by incorporating advanced statistical methods
[3] to develop the T2- and Q-statistics, by which control charts can
be extended to multivariate cases [4–6].

At the same time as the development of control charts was
occurring, work in chemometrics led to the development of new
data analysis methods, for example, principal component analysis
(PCA) and partial least squares (PLS) [7–9]. Finally, in the early
1990s, the PLS and PCA methods were combined with T2- and Q-
statistics leading to the development of a new field of chemical
process monitoring [10–12]. These methods are primarily called
multivariate statistical process monitoring (MSPM) or data-driven
methods [13], and can be structured in the process control fra-
mework as shown in Fig. 1. It is shown that they take all the in-
formation about the process components (actuators, sensors,
controllers, and key performance indicator) in a process control
loop into consideration. Thus, they can address different types of
process faults. The general procedure for these methods is to de-
velop analytical models of normal and faulty operating conditions,
onto which the current process data can be projected to give a
measure of its current performance [14]. The key difference be-
tween the PCA- and PLS-based methods is how they use the
available data space. As can be seen in Fig. 1, PCA-based methods
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monitor the complete data space, while PLS-based methods
monitor solely a subspace of the complete data space, commonly
referred to as the key performance indicator (KPI)-related sub-
space [4]. It should be noted that the PCA model is indeed a
subspace model that only considers the principal component
subspace, while from the PM-FD viewpoint, PCA-based methods
cover the complete data space. Due to the lack of first principles
models, MSPM methods have been quickly adopted by chemical
engineers [15–19]. As well, such methods have been applied to
such areas as semiconductor, polymers, iron, and steel processes
[20,21]. Although there are intensive uses of T2 and Q statistics in
MSPM literature, and some commercial uses were reported in
practical applications, the study of developing a framework based
on how the MSPM methods use the two statistics is rare [22–24].
In addition, even though these methods are reported to be prac-
tical in industrial application, few work has focused the attention
on assessing their performance using statistical approaches.

In many industrial applications, MSPM methods are used to
detect faults, of which the most common application is to additive
faults, that is, those faults which change the mean value of the
process. The implementation and assessment of these methods for
multiplicative faults, which impact the variance or covariance
parameters of a process variable has rarely been considered. In
[25], Hao et al. showed, by comparing the original and current
formulae for the T2-statistic, that MSPM methods could be applied
to multiplicative faults. However, greater details, specially from a
statistical viewpoint, are required before such methods can be
more readily accepted for detecting multiplicative faults. In addi-
tion to these methods, many other methods have been proposed
for detecting multiplicative faults [26–28]. A third type of fault, the
drift fault, which cause a slow change in the process parameters,
has recently become a new area of focus. Such faults, if noticed
early, can be mitigated before they adversely impact the system.

In many industrial applications, MSPM methods are used to
detect faults, of which the most common application is to additive
faults, that is, those faults which change the mean value of the
process. The implementation and assessment of these methods for
multiplicative faults, which impact the variance or covariance
parameters of a process variable has rarely been considered. In
[25], Hao et al. showed, by comparing the original and current
formulae for the T2-statistic, that MSPM methods could be applied
to multiplicative faults. However, greater details, specially from a
statistical viewpoint, are required before such methods can be
more readily accepted for detecting multiplicative faults. In addi-
tion to these methods, many other methods have been proposed
for detecting multiplicative faults [26–28]. A third type of fault, the
drift fault, which cause a slow change in the process parameters,
has recently become a new area of focus. Such faults, if noticed
early, can be mitigated before they adversely impact the system.

In assessing the performance of MSPM methods, three different
aspects are commonly considered: the false alarm rate (FAR),
which examines the performance of the method in normal oper-
ating conditions; the fault detection rate (FDR), which considers

the performance during faulty conditions; and the detection delay
(DD), which measures the time delay before a fault is detected.
These parameters can be defined either using a probabilistic ap-
proach [4,29,30] or using a numerical approximation approach
[23]. In most cases, only the first two metrics are considered
[15,21], while using all three is rarer [23,31]. Recently, the DD
metric was extended to the case of stochastic systems to give an
expected DD (EDD) index, which was then used, together with the
FDR, to evaluate MPSM methods when detecting constant faults
[22]. Given a constant fault and a method to be examined, EDD is
capable of determining the expected detection delay time, but its
application is limited to constant additive faults. The extension of
this approach to multiplicative and drift faults has major practical
interests.

Therefore, based on above motivations, the objectives of this
paper are:

� to revisit the definitions of T2- and Q-statistics, FDR, and EDD;
� to group the commonly used MSPM methods that involve the

T2- and Q-statistics;
� to extend the EDD index to drift and multiplicative faults;
� to evaluate the performance of the examined MSPM methods

for detecting drift and multiplicative faults using EDD; and
� to demonstrate the results using numerical case studies and the

Tennessee Eastman (TE) benchmark process.

The paper is organised as follows. Section 2 introduces the
definitions of T2- and Q-statistics, FDR as well as the newly de-
veloped performance evaluation index, EDD. In Section 3, a unified
framework for MSPM methods that use the two statistics is pre-
sented. Sections 4 and 5 focus on the calculation form of EDD for
all MSPM methods. In Section 4, the calculation of FDR is firstly
addressed, while in Section 5, the calculation of EDD based on FDR
is presented. The proposed methods are tested using a numerical
case and the TE benchmark process. Finally, Section 7 presents the
key conclusions and future direction.

Notation: Let m be the m-dimensional Euclidean space;  ×n m

be the set of ×n m real matrices; ( ·)† denote the pseudo-inverse;
Im be the ×m m-dimensional unit matrix; (·)tr represent the trace
of a matrix; ⊕ denote the direct sum of two vector-spanned
spaces; ⊥P denote the orthogonal complement of P; ∨ and ∧ re-
present logical‘or’ and ‘and’;  ( )μ Σ∼ Υx ,x x represent a Υ -variate
Gaussian-distributed vector x with mean vector μx and covariance
matrix Σx; χ αl,

2 be the χ2-distribution withldegrees of freedom;

χ λ( )l
2 be the noncentral χ2 distribution withldegrees of freedom

and noncentrality parameter λ; Let ( )χ χ α> =αprob l
2

,
2 represent

the probability that χ χ> αl
2

,
2 equals α.

2. Definitions of JT2, JQ, FDR and EDD

Let ∈yobs
m denote the process measurement vector. It is as-

sumed that  ( )μ Σ μ∼y , ,obs m y y and Σy are unknown beforehand.

Given sufficient samples denoted as ⎡⎣ ⎤⎦= … ∈ ×Y y y, ,obs obs obs N
m N

,1 , ,
μy and Σy can be unbiasedly estimated using

( )( )( ) ( )μ Σ μ μ≈ ∑ ≈ ( − ) ∑ − −= =N y N y y1/ , 1/ 1y i
N

obs i y i
N

obs i y obs i y
T

1 , 1 , , .

For the sake of simplicity, the mean-centered vector  ( )Σ∼y 0,m y

is used. Designing FD methods for monitoring y consists of
(1) defining the detection (test) statistic J and the corresponding
threshold Jth; (2) comparing the online realization of J against Jth to
make the decision: faulty or fault-free. The commonly used sta-
tistics are the T2- and Q-statistics [6].

Given the covariance structure, Σy, and routine measurement
vector, y, the two statistics are defined [4,6]
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Fig. 1. Multivariate statistical process monitoring systems [13].
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