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a b s t r a c t

The practicality of robust model predictive control of systems with model uncertainties depends on the
time consumed for solving a defined optimization problem. This paper presents a method for the
computational complexity reduction in a robust model predictive control. First a scaled state vector is
defined such that the objective function contours in the defined optimization problem become vertical
or horizontal ellipses or circles, and then the control input is determined at each sampling time as a state
feedback that minimizes the infinite horizon objective function by solving some linear matrix inequal-
ities. The simulation results show that the number of iterations to solve the problem at each sampling
interval is reduced while the control performance does not alter noticeably.

& 2014 ISA. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Model predictive control (MPC) is widely adopted to control
industrial processes. Though almost all processes are inherently
nonlinear, most MPC applications are based on linearized or
uncertain linear dynamic models [1,2]. One of the main reasons
for this choice relates to the high on-line computational complex-
ity which resulted from the direct use of nonlinear and non-
convex programming techniques [3].

By using a linear model and a quadratic objective function, the
convex quadratic programwhich resulted from the MPC algorithm
can easily be solved but for some processes, nonlinear effects are
significant and therefore they should be considered in the control
design stage. In this case, a convex problem that is solved
efficiently via semi-definite programming could be tailed for
MPC for nonlinear systems, through linear dynamic approximation
of the nonlinear process together with defining a quadratic bound
on the approximation error [4]. Nevertheless, for on-line imple-
mentation of MPC strategies, effective computational methods
should be employed. Since there are effective and powerful
algorithms for solving linear matrix inequality (LMI) problems,
minimizing the upper bound on the worst-case objective function
defined in MPC could be transformed to a convex optimi-
zation problem involving LMIs [1,5–8]. Solving an LMI-based

optimization problem is generally performed iteratively. If an
algorithm be able to reduce the number of required iterations,
the computation time would be reduced in accordance.

There are methods to reduce the computational complexity of
optimization problems defined in an MPC algorithm. Combining
some methods for improving the speed of model predictive
control and considering some variations on the basic infeasible
start a primal barrier method can be used for on-line optimization
in the linear systems with disturbances that are independent
identically distributed with known distribution [9]. The technique
based on a robust model predictive control design, the stability
enforcing constraint and the warm-start procedure are among the
methods that provide guarantees on feasibility and stability for
real time constraints for systems with both polytopic uncertainty
and bounding disturbances in a compact and convex set [10]. In a
linear conjugate gradient method, by defining scaled variables
based on a transformation matrix that has elements corresponding
to the conjugate directions, the contours of the objective function
become ellipses whose axes are aligned with the coordinate
directions. The minimum of such objective function could be
found by performing one-dimensional minimizations along the
coordinate directions. As a result, the number of iterations to reach
the solution is generally reduced [11].

In this paper a new approach to reduce the computational
complexity in the robust model predictive control (RMPC) is
introduced. In the proposed algorithm, the nonlinear system is
approximated by a linear model around an equilibrium point and
the difference between the linear and the nonlinear models
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assumed to be locally Lipschitz. In the controller design stage, this
nonlinear term (the linear approximation error) is replaced by a
quadratic function of states (and/or inputs) which is determined
using sum of squares (SoS) in an off-line manner.

At the beginning time step, a state feedback that minimizes the
upper bound of an infinite horizon objective function is computed
by solving a set of defined linear matrix inequalities. Then the
region of feasibility for the defined problem is determined that is
an invariant ellipsoid. For the remaining time steps a scaled state
space is defined and the scaling matrix is computed by solving
some nonlinear equations so that the contours of this region
become vertical or horizontal ellipses or circles. Finally the
problem is re-solved for the scaled system and the control law is
designed as described before.

The rest of this paper is organized as follows. Section 2 presents
some preliminaries. Section 3 describes the mathematical formu-
lation of RMPC problem using LMIs. In Section 4, an SoS algorithm
is presented to calculate a dominant quadratic function for the
terms consist of the nonlinear parts of the system. Section 5
explains the proposed method for decreasing the computational
complexity in RMPC. In Section 6 a numerical example is given to
describe the design procedure and illustrate the effectiveness of
the method. Finally Section 7 draws some conclusions.

2. Preliminaries

Consider a nonlinear discrete time system represented by

x kþ1ð Þ ¼ f x kð Þ;u kð Þð Þ; ð1Þ

where k is the discrete time index, xðkÞARn is the state vector,
uðkÞARm is the control input, and f 0;0ð Þ ¼ 0. It is assumed that the
working point is transferred to the origin. Let A and B be ∂f =∂x and
∂f =∂u at the working point. Then dynamic system (1) can be
reformulated as

x kþ1ð Þ ¼ Ax kð ÞþBu kð Þþ ~f ðx kð Þ;u kð ÞÞ; ð2Þ

where

~f x kð Þ;u kð Þð Þ ¼ f x kð Þ;u kð Þð Þ�Ax kð Þ�BuðkÞ ð3Þ

is locally Lipschitz. The state and control variables are required to
satisfy the following constraints

x kþ ijkð ÞAX;u kþ ijkð ÞAU; iZ0 ð4Þ

where X and U are compact sets in Rn and Rm, respectively, both
containing the origin as an interior point. In order to design a state
feedback control law u kþ ijkð Þ ¼ F kð Þx kþ ijkð Þ, iZ0 for the system
in (1), one can consider minimizing the following objective
function over an infinite prediction horizon

minuðkþ ijkÞ JðkÞ ¼∑1
i ¼ 0x kþ ijkð ÞTQx kþ ijkð Þþu kþ ijkð ÞTRuðkþ ijkÞ

ð5Þ
subject to

x kþ ijkð ÞAX and u kþ ijkð ÞAU; iZ0; ð6Þ

where Q and R are symmetric positive definite weighting matrices.
Let us introduce a candidate Lyapunov function for system (1) at
sampling time k in the form V xðkjkÞð Þ ¼ x kjkð ÞTPxðkjkÞ with P40
and V 0ð Þ ¼ 0. Suppose that V xð Þ satisfies the following constraint

V x kþ iþ1jkð Þð Þ�V x kþ ijkð Þð Þ

r�x kþ ijkð ÞTQx kþ ijkð Þ
�u kþ ijkð ÞTRu kþ ijkð Þ ð7Þ

By summing both sides of (7) from i¼ 0 to1 and then applying
(5), it follows that

xð1jkÞTPx 1jkð Þ�xðkjkÞTPx kjkð Þr� JðkÞ: ð8Þ
For asymptotic stability of the resulting closed loop system,

x 1jkð Þ must be zero which implies that

JðkÞrxðkjkÞTPxðkjkÞrγ; ð9Þ
where γ is a positive scalar and represents the upper bound of J kð Þ.

Lemma 1. (Schur complements): Let H xð Þ ¼HðxÞT , O xð Þ ¼OðxÞT , and
D(x) be affine in x. Then the LMI

HðxÞ DðxÞ
DðxÞT OðxÞ

" #
40 ð10Þ

is equivalent to

O xð Þ40; H xð Þ�D xð ÞOðxÞ�1DðxÞT 40 ð11� 1Þ
or

H xð Þ40; O xð Þ�DðxÞTHðxÞ�1D xð Þ40: ð11� 2Þ

3. Model predictive control using LMI

In this section, the problem formulation for the proposed robust
MPC and its related LMI-based optimization are discussed. In this
method, a state feedback control law u kþ ijkð Þ ¼ F kð Þx kþ ijkð Þ, iZ0
is designed so that the upper bound of JðkÞ (γ) is minimized instead
of JðkÞ itself. The new problem is defined as follows:

minuðkþ ijkÞ max JðkÞ ¼∑1
i ¼ 0x kþ ijkð ÞTQx kþ ijkð Þþu kþ ijkð ÞTRuðkþ ijkÞ

ð12Þ
subject to

x kþ ijkð ÞAX and u kþ ijkð ÞAU; iZ0:

Solution to this problemwhich will be obtained by solving a set
of LMIs is the output of the proposed MPC law.

Theorem 1. Let x kð Þ ¼ xðkjkÞ be the state of the system in (1)
measured at sampling time k. Consider the Euclidean norm constraint
on the control input in the form of jjuðkþ ijkÞjj2rumax, iZ0. Then,
the state feedback matrix F in the control law that minimizes the
upper bound V x kjkð Þð Þ on the objective function at instant k is given
by F ¼ YX�1 where X40 and Y are obtained from the solution of the
following optimization problem.

minγ;β;X;Yγ ð13Þ

subject to

I n

xðkÞ X

" #
Z0; ð14� 1Þ

X n n n n

AXþBY X n n n

WX 0 βI n n

Q
1
2X 0 0 γI n

R
1
2Y 0 0 0 γI

2
66666664

3
77777775
Z0; ð14� 2Þ

X�βIZ0; ð14� 3Þ
and

u2
maxI n

YT X

" #
Z0; ð14� 4Þ
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