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a b s t r a c t

This work deals with the fault diagnosis problem, some new properties are found using the left
invertibility condition through the concept of differential output rank. Two schemes of nonlinear
observers are used to estimate the fault signals for comparison purposes, one of these is a proportional
reduced order observer and the other is a sliding mode observer. The methodology is tested in a real time
implementation of a three-tank system.

& 2013 ISA. Published by Elsevier Ltd. All rights reserved.

1. Introduction

A fault can be considered as a process degradation or degradation
of the equipment performance caused by the change in the physical
characteristic of the process, the input process or the external
conditions. Industrial control systems have to deal with faults, there-
fore, fault diagnosis is a very important subject in control theory.
System diagnosis helps us to detect and estimate faults in a process. In
other words, the task of diagnosis is, from measurements of outputs
and inputs, to reconstruct the fault vector.

The fault detection and isolation problem have been studied for
more than three decades, many papers dealing with this problem can
be found, see for instance the surveys [1–4] and the books [5–7]. For
the case of nonlinear systems a variety of approaches have been
proposed [8–13], such as those based upon differential geometric
methods [14,15], and on the other hand, alternative approaches based
on an algebraic and differential framework can be found in [16–20].

Currently, the diagnosis problem is playing an important role in
modern industrial processes. This has led control theory into a
wide variety of model-based approaches which rely on descrip-
tions via differential and/or difference equations, contrary to other
standpoints developed mainly among computer scientist (see
[18,19] and references therein). The primary objectives of fault

diagnosis are fault detectability and isolability, i.e., the possible
location and determination of the faults present in a system and
the time of their occurrences. The tasks of fault detection and
isolation are to be accomplished by measuring only the input and
the output variables.

This paper focuses on the diagnosis of nonlinear systems and
the goal is to determine malfunctions in the dynamics. In this
communication, the outputs are mainly signals obtained from the
sensors. Their number is important to know whether a system is
diagnosable or not.

In this paper, the diagnosis problem is tackled as a left invertibility
problem throughout the concept of differential output rank ρ. Two
schemes of observers are proposed in order to estimate the fault
signals, one of them is a reduced-order observer based on a free-
model approach and another is a sliding-mode observer based on a
Generalized Observability Canonical Form (GOCF) [18]. Both schemes
are proved to possess asymptotic convergence properties.

The class of systems for which this methodology can be applied
contains systems that depend on the inputs and their time
derivatives in a polynomial form. The type of faults considered
in this work is additive and bounded, however, the algebraic
approach can also be used to deal with multiplicative faults.

These proposals are applied in this paper to a three-tank system
[21]. The Amira DTS200 three-tank system [22] has been widely
considered for the experimental fault diagnosis study, see for
instance [15,17,23], even recently, one work based on the geometric
approach has been reported [15]. We can also mention one previous
work with the three-tank system using the differential algebraic
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approach [17]; in that work the authors only report a numerical
simulation study and not a real-time experiment, also they only solve
the simplest case in which three measured outputs are available to
estimate two faults, that is to say, they do not analyze the minimal
number of measurements to attack the diagnosis problem as we do
in the present work. The intention of choosing the three-tank system
example is to clarify the proposed methodology and to highlight the
simplicity and flexibility of the present approach. The three-tank
system is known as a system with parameter uncertainties, so this
work also deals with these uncertainties by means of algebraic
parameter estimation, considering that there is no simultaneous
presence of uncertainty and faults, in the same way as it is
considered in [17].

This paper is organized as follows. In Section 2, some defini-
tions of differential algebra are given. In Section 3, we discuss the
left invertibility condition and we present some examples. In
Sections 4 and 5 we give a brief description of the proposed
observers. In Section 6 the three-tank system is analyzed. Finally,
in Section 7 we illustrate this methodology with some experi-
mental results.

2. Some definitions

Some basic definitions are introduced. Further details can be
found in [17,18] and references therein.

Definition 1. Let L and K be differential fields. A differential field
extension L=K is given by K and L such that: (1) K is a subfield of
L and (2) the derivation of K is the restriction to K of the
derivation of L.

Example 1. R〈et〉=R is a differential field extension, where RD
R〈et〉. et being a solution of _x−x¼ 0.

Definition 2. Let ξ¼ ðξ1; ξ2;…; ξnÞ be a set of elements of L. If it
satisfies an algebraic differential equation Pðξ; _ξ; €ξ…Þ ¼ 0 with
coefficients in K it is called differentially K�algebraically
dependent, otherwise ξ is called differentially K�algebraically
independent.

Definition 3. Any set of elements of L which is differentially
K�algebraically independent and maximal with respect to inclu-
sion forms is a differential transcendence basis of L=K. Two such
bases have the same cardinality. This is called the differential
transcendence degree of L=K and denoted by diff tr d○L=K.

Definition 4. Let G, K〈u〉 be differential fields. A nominal dynamic
consists of a finitely generated differential algebraic extension
G=K〈u〉, ðG¼K〈u; ξ〉; ξ∈GÞ. Any element of G satisfies an algebraic
differential equation with coefficients over K in the components of
u and their time derivatives.

Example 2. Consider the following differential equation:

_u2yþ 4 €u ¼ 0

In this case, y is algebraic over K〈u〉, therefore, it can be seen as a
dynamic of the form K〈u; y〉=K〈u〉 where K¼R and y∈K〈u; y〉.

Definition 5. Any unknown variable x in a dynamic is said to be
algebraically observable with respect to K〈u; y〉 if x satisfies a differ-
ential algebraic equation with coefficients over K in the components
of u, y and a finite number of their derivatives. Any dynamic with
output y is said to be algebraically observable if, and only if, any state
variable has this property.

Example 3. Let us consider the following system:

_x1 ¼ 3x1x22 þ u1

_x2 ¼ x1 þ x32u2

y¼ x2;

8><
>: ð1Þ

since x1 and x2 satisfy the polynomials x1 þ y3u2− _y ¼ 0 and
x2−y¼ 0, respectively, then x1; x2 are algebraically observable over
R〈u; y〉 and by applying Definition 5, system (1) is algebraically
observable.

Definition 6. A fault is not a permitted deviation of at least one
characteristic property or parameter of any process in relation to
the development of the same parameter under normal conditions.
Faults are defined as transcendent elements over K〈u〉, therefore, a
system with the presence of faults is a differential transcendental
extension, denoted as K〈u; f ; y〉=K〈u〉, where f is a vector that
includes the faults and their time derivatives.

Definition 7. Let G, K〈u〉 be differential fields. A fault dynamic
consists of a finitely generated differential algebraic extension
G=K〈u; f 〉, G¼K〈u; f ; ξ〉; ξ∈G. Any element of G satisfies an algebraic
differential equation with coefficients over K in the components of
u; f and their time derivatives.

Definition 8 (Algebraic observability condition). A fault f∈G is said
to be diagnosable if it is algebraically observable over R〈u; y〉, i.e.,
if it is possible to estimate the fault from the available measure-
ments of the system.

Let us consider the class of nonlinear systems with faults
described by the following equation:

_xðtÞ ¼ Aðx;uÞ
yðtÞ ¼ hðx;uÞ;

(
ð2Þ

where x¼ ðx1;…; xnÞT∈Rn is a state vector, u¼ ðu1;…;umÞ∈Rm is a
known input vector, f ¼ ðf 1;…; f μÞ∈Rμ is an unknown input vector,
u ¼ ðu; f Þ∈Rmþμ, yðtÞ∈Rp is the output vector. A and h are assumed
to be analytical vector functions.

Example 4. Let us consider the nonlinear system with one fault
ðf 1Þ on the actuator and one fault ðf 2Þ on the sensor of output y1:

_x1 ¼ x1x2 þ f 1 þ u
_x2 ¼ x1
y1 ¼ x1 þ f 2
y2 ¼ x2:

8>>>><
>>>>:

ð3Þ

Since f 1, f2 satisfy the differential algebraic equations

f 1− €y2 þ y2 _y2 þ u¼ 0

f 2−y1 þ _y2 ¼ 0 ð4Þ

the system (3) is diagnosable and the faults can be reconstructed
from the knowledge of u, y and their time derivatives.

Remark 1. The diagnosability condition is independent of the
observability of a system.

Example 5. Let us consider the system

_x1 ¼ x1x2 þ f þ u
_x2 ¼ x1
_x3 ¼ x3f þ u

y¼ x2:

8>>>><
>>>>:

ð5Þ

In this case f is diagnosable. However, x3 is not algebraically
observable.
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