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a b s t r a c t

Compressed sensing (CS) method has attracted increasing attention owing to providing a novel insight
for signal and image processing technology. Acquiring high-quality reconstruction results plays a crucial
role in successful applications of CS method. This paper presents a multiscale reconstruction model that
simultaneously considers the inaccuracy properties on the measurement data and the measurement
matrix. Based on the wavelet analysis method, the original inverse problem is decomposed into a
sequence of inverse problems, which are solved successively from the largest scale to the original scale.
An objective functional, that integrate the beneficial advantages of the least trimmed sum of absolute
deviations (LTA) estimation and the combinational M-estimation, is proposed. An iteration scheme that
incorporates the advantages of the homotopy method and the evolutionary programming (EP) algorithm
is designed for solving the proposed objective functional. Numerical simulations are implemented to
validate the feasibility of the proposed reconstruction method.

& 2014 ISA. Published by Elsevier Ltd. All rights reserved.

1. Introduction

In recent years, the CS method has attracted increasing atten-
tion. Essentially, CS method is based on the fact that a relatively
small number of the projections of a sparse signal can contain
most of its salient information, which can be recovered by an
appropriate algorithm. Due to providing a new insight for signal
and image processing, CS method has found potential applications
in numerous fields, including the machine learning, imaging
processing, wireless sensing networks, remote sensing, astronomy,
signal processing and data analysis [1–10].

CS reconstruction task is essentially an inverse problem, in
which reconstruction algorithms play a crucial role in real applica-
tions. Presently, the key issue on the improvement of the recon-
struction quality has attracted increasing attention, and thus
various algorithms have been proposed for CS reconstruction.
Common CS reconstruction algorithms can be approximately
divided into three categories [11]: (1) the greedy pursuits, includ-
ing the orthogonal matching pursuit (OMP) [12], the stagewise
OMP (StOMP) [13] and the regularized OMP (ROMP) [14], the
compressive sampling matching pursuit (CoSaMP) [11], where
these methods build up an approximation one step at a time
by making locally optimal choices at each step; (2) the convex

relaxation algorithms, including the interior-point methods [15],
the gradient projection methods [16], the iterative thresholding
algorithm [17], the split Bregman iteration algorithm [18] and
the fast iteration shrinkage-thresholding method [19], where
CS reconstruction model is cast as an optimization problem and
(3) the combinatorial algorithms that acquire highly structured
samples of the signal that support rapid reconstruction by group
testing [11]. Owing to the complexities and particularities of CS
reconstruction tasks and the urgent requirements of the compli-
cated application problems, generally, seeking a reliable recon-
struction method remains a critical problem.

Common CS reconstruction algorithms often consider the
inaccurate properties on the measurement data, and thus the
improvement of the reconstruction quality is restricted. It is found
that in real applications the measurement matrix may be inaccu-
rate because of physically implementing the measurement matrix
in a sensor [20]. As a result, it is more reasonable to simulta-
neously consider the inaccurate properties on the measurement
data and the measurement matrix in CS model. Additionally,
CS reconstruction task is often cast as an optimization problem,
and seeking a reliable optimization algorithm is crucial. Currently,
local optimization algorithms have found wide applications in CS
reconstruction. Unfortunately, it is hard for the local optimization
algorithms to ensure a possible global optimal solution, and thus
developing a global optimization algorithm is highly appropriate
for CS inverse problem.

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/isatrans

ISA Transactions

http://dx.doi.org/10.1016/j.isatra.2014.05.001
0019-0578/& 2014 ISA. Published by Elsevier Ltd. All rights reserved.

n Corresponding author. Tel.: þ86 10 61772472; fax: þ86 10 61772219.
E-mail address: leijing2002@gmail.com (J. Lei).

Please cite this article as: Lei J, et al. Multiscale reconstruction algorithm for compressed sensing. ISA Transactions (2014), http://dx.doi.
org/10.1016/j.isatra.2014.05.001i

ISA Transactions ∎ (∎∎∎∎) ∎∎∎–∎∎∎

www.sciencedirect.com/science/journal/00190578
www.elsevier.com/locate/isatrans
http://dx.doi.org/10.1016/j.isatra.2014.05.001
http://dx.doi.org/10.1016/j.isatra.2014.05.001
http://dx.doi.org/10.1016/j.isatra.2014.05.001
mailto:leijing2002@gmail.com
http://dx.doi.org/10.1016/j.isatra.2014.05.001
http://dx.doi.org/10.1016/j.isatra.2014.05.001
http://dx.doi.org/10.1016/j.isatra.2014.05.001
http://dx.doi.org/10.1016/j.isatra.2014.05.001
http://dx.doi.org/10.1016/j.isatra.2014.05.001


In order to emphasize the above challenges, naturally, this paper
attempts to develop a reconstruction method to improve the recon-
struction quality. Main contributions are summarized as follows.

1. Differing from common CS reconstruction models, a multiscale
reconstruction model that simultaneously considers the inac-
curate properties on the measurement matrix and the mea-
surement data is proposed. The original CS inverse problem is
decomposed into a sequence of inverse problems by means of
the wavelet analysis method, which are solved successively
from the largest scale to the original scale.

2. An objective functional that integrates the beneficial advantages
of the LTA estimation and the combinational M-estimation is
proposed. An iterative scheme that incorporates the advantages
of the homotopy method and the EP algorithm is designed for
searching a possible global optimal solution.

3. Numerical simulations are implemented to validate the feasi-
bility of the proposed reconstruction method. Especially, this
paper presents a general framework for CS reconstruction,
which may be useful for the solving of other related inverse
problems.

The rest of this paper is organized as follows. In Section 2, the
CS model is concisely introduced. In Section 3, the wavelet multi-
scale analysis method is introduced, and a multiscale reconstruc-
tion model that simultaneously emphasizes the inaccurate
properties on the measurement matrix and the measurement data
is proposed. In Section 4, the original CS reconstruction model is
cast as an optimization problem, and an objective functional is
proposed. Section 5 introduces the homotopy method and the EP
algorithm, and an iterative scheme that integrates the advantages
of the both algorithms is designed for solving the proposed
objective functional. Numerical results and discussions are pre-
sented in Section 6. Finally, Section 7 presents a summary and
conclusions.

2. CS model

In this section, the CS reconstruction model is introduced briefly,
and more details on the CS theory can be found in [21–24]. If a
signal x is sparse, CS model attempts to reconstruct x from just a
few linear measurements of x, which can be formulated by

y¼Φx ð1Þ

where y is an m� 1 dimensional vector indicating the linear
measurements of x; x indicates an n� 1 dimensional vector
standing for a sparse signal or image; Φ represents a matrix of
dimension m� n, which is called as the measurement matrix.
Common measurement matrices include the Gaussian measure-
ment matrix, the Binary measurement matrix and the Fourier
measurement matrix, and more discussions on this issue can be
found in [22].

If a signal is not sparse, however, it can be sparsely represented
by the other bases, such as the wavelet bases and the Fourier
bases, Eq. (1) can be rewritten as [25]

y¼Φψa ð2Þ

where x¼ ψa, and ψ is a matrix of dimension n� n. It is worth
emphasizing that in real applications, different basis functions will
lead to different sparsity representations, which may bring differ-
ent reconstruction results. More discussions on the sparsity
representation methods can be traced back to [26,27].

With the consideration of the ubiquitous measurement noises
in real applications, Eqs. (1) and (2) can be generalized as [25]

y¼Φxþr ð3Þ

y¼Φψaþr ð4Þ
where r is an m� 1 dimensional vector standing for the measure-
ment noise.

In brief, the main motivation of the CS inverse problem is to
estimate x from the given Φ and y under the condition of
satisfying sparsity assumption of x, which is often cast as a
L1-regularization problem [8]:

min JðxÞ ¼ 1
2
JΦx�yJ2þα ∑

n

i ¼ 1
jxij ð5Þ

where α40 is the regularization parameter; J U J defines the 2-norm
for a vector and jU j represents the absolute value operator.

3. Multiscale reconstruction model

3.1. Extension of the CS model

It is found from Eqs. (3) and (4) that the standard CS model
only refers to the inaccurate property of the measurement data,
and the considerations of the inaccuracy of the measurement
matrix are absent. In real applications, the measurement matrix
may be inaccurately derived from the physically implementing
the measurement matrix in a sensor or the model approximation
deviations [20], and thus it is essential to simultaneously consider
such inaccuracies for the improvement of the reconstruction
quality. The total least squares estimation simultaneously exploits
the inaccurate properties of the measurement data and the
measurement matrix, which can be described by [28]

ðΦþEÞx¼ yþr ð6Þ
where E is a perturbation matrix of dimension m� n. It is crucial
to consider this kind of inaccuracy since it can explain the
precision errors derived from physically implementing the mea-
surement matrix in a sensor. For example, when Φ represents a
system model, E can model the errors derived from the assump-
tions on the transmission channel. Furthermore, E can also model
the deviations derived from the discretization of the domain of the
analog signals and systems [20].

3.2. Background of wavelet transformation

The wavelet analysis is a particular representation of signals
[29]. According to the multi-resolution analysis, a signal f ðtÞ is
considered to belong to the scaling space V0 (i.e.f ðtÞAV0). Imple-
menting the multiscale decomposition yields [30,31]

V0 ¼ ψ1 � V1 ¼ ψ1 � ψ2 � ⋯ � ψϖ � Vϖ ð7Þ
where ψ j represents the orthogonal complete place in the jth scale
and ϖ stands for a given decomposition scale.

By means of the matrix method, the discrete wavelet transfor-
mation (DWT) of a signal can be easily achieved. Given a vector U0

with the length of N, and its DWT can be described in the matrix
notation by defining a matrix Wn of dimension N � N [32,33]:

Wn ¼
Ln
Hn

" #
ð8Þ

where Ln and Hn represent the matrices of dimension ðN=2Þ � N,
and they are called as the low-pass and the high-pass filter
matrices, respectively. The product WnU0 decomposes the vector
U0 into two components: the approximate coefficient U1 and the
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