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A B S T R A C T

Optical methods had been used widely to measure stress–strain by different contact and non-contact methods.
This paper introduces an alternative non-contact method to measure the stress–strain evolution based in one
laser-beam reflected in the cross-section of a ductile material while it is under a compression load. We use
Gaussian beam propagation equations to calculate the area of the reflected beam and we analyse this area
increment applying Digital Image Processing. From this calculation we got a stress–strain diagram and we
compare it with the real diagram.

1. Introduction

Stress-strain diagrams are very important to understand the beha-
viour of materials under different loads [1]; these diagrams are divided
into three sections of interest: elastic, plastic and rupture. There are two
methods to obtain those diagrams: contact and non-contact. In the
former case, mechanics excels doing physical tests such as compression
tests in which a material is placed in the universal machine, a con-
tinuous load is applied to it and the resulting deformation is measured
[2]. Optical methods are also used as an invasive way to determine
residual stress, in-field displacements and strain, in which hole-drilling
is the most used technique, developed in 1930 by Mathar [3]. Nowa-
days this technique is standardized by ASTM [4] and has many appli-
cations such as measuring the residual stress profile in veneering
ceramics [5]; also it is applied for stress quantification [6]. Non-de-
structive optical methods such as chromatic confocal imaging to esti-
mate surface displacements [7]; multiple laser displacement sensors
applied in piping systems [8]; crystal curvature technique during film
growths [9]; another one extends conventional Moiré interferometry
method to the micron-level spatial domain called micro-moiré inter-
ferometer [10]. Some other techniques as deflectometry [11–13], in
which is used light passing through a fringe array for measuring cur-
vatures of objects which are taken as mirrors, the reflected light is
observed into a CCD camera and the fringe pattern is analysed with
standard phase shift techniques, most of the analysed objects have as-
pherical shape. Another one uses parallel light beams to measure sur-
face curvatures [14], in which is used a collimated light beam passed
through means for producing parallel light beams which are reflected
off the surface to fall upon a detector that measures the separation of
the reflected beams. Both of them measure deformations that already

exist in the samples. Currently there exist some techniques to measure
the focal length using coherent gradient sensing [15] and also to
measure the radius of curvature [16].

The development of non-destructive testing methods is the main
challenge for the assessment of structural elements in existing con-
structions. This paper presents an alternative method for measuring the
stress-strain behaviour of ductile materials, in which we use a laser
beam focusing on the cross-section of our sample which is under a
compression test. We propose that the material (1018 steel) will act
as an optical spherical mirror, as the material is first completely flat and
its cross-section will change due to a reaction of the compression test;
the laser strikes its surface and this “mirror” will reflect and scatter the
beam, therefore the scattered area will increase as the deformation
increases. The scattered area is analysed with Gaussian beam propa-
gation equations and it is used Digital Image Processing (DIP) in order
to measure each area increasing. This is how we obtain a relation be-
tween the beam propagation and the strain, which we propose to be
similar to the radius transformation of the steel. We calculate the ac-
curacy, error and sensitivity of the method, as well as a theoretical
demonstration of our phenomenological process; assessing that the
present work would be a cheap technique as it only uses one laser beam
for stress-strain measurements.

In Section 2 we put forward concepts that are used in the present
work. Section 2.1 shows the optical part, including the Gaussian beam
equation, beam propagation equations and how the focal length is
calculated using initial parameters from our laser. Section 2.2 shows the
mechanical part, including the well-known stress-strain relation with
the Young’s modulus and how we related it to our calculated parameter.
In Section 2.3 we present two theoretical demonstrations starting from
Gaussian equation and Fresnel diffraction Experimental set-up is
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presented in Section 3, which includes the dimensions of our samples,
how compression tests are done and how DIP is taking place. Finally the
results and discussion are shown in Section 4, in which there are two
plots of interest: the stress-strain diagram which is obtained from the
universal machine and the DIP plot which is calculated using a program
written in Matlab®.

2. Theory

2.1. Gaussian beam analysis

The simplest beam and the most known is the Gaussian, because its
characteristics and evolution are well-known [17]. The amplitude
function represented from Gaussian beams could be deduced by ap-
plying boundary conditions in the optical resonator where the laser
radiation is produced, this amplitude is described by
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where w0 is the beam waist, W (z) is how the beam propagates, R (z) is
the curvature radius of the spherical waves and η (z) is the beam phase
angle [18]. Gaussian beams are able to pass through different media;
the light reflexion occurs when it arrives to the boundary separating
two media of different optical densities and some of the energy is re-
flected back into the first medium [19], taking this outset, if a laser-
beam strikes a mirror, the reflection can be studied as a Gaussian pro-
pagation. In our case, the metallic surface will be modelled as a convex
mirror. As it is well-known, there is a relation between the focal length
and the curvature radius of a mirror. Using this relation the phase of the
transmitted wave is altered to
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where z0 is the initial Rayleigh distance, w0 is the initial beam waist,
and f is the focal length of the mirror [20]. There are also propagation
equations, in which w0 and z0 turns into w1 and z1 respectively, after a
distance f and they are calculated by:
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This pair of equations involves how Gaussian beam propagates [20], so
in order to calculate the new beam waist in the propagation axis we
have:
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where W (zp) is the new beam waist at zp which is the propagation
distance. One of the aims of the present investigation is to deduce a
relation between the radius transformation of the compressed material
and the real strain; all these equations are needed in order to calculate
the change of the focal length of the material during the compression
test. Substituting Eqs. (3) and (4) in Eq. (5) is deduced:
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W (zp) is calculated doing DIP, taking 54 area increments per second
during the compression test. Once is obtained the result from Eq. (6),
the variation of the focal length is determined applying
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where ff is the final focal length and fi is the initial focal length, thus a
dimensionless variable is obtained.

2.2. Compression tests

Physical tests are used in order to know mechanical properties of
materials and compression test is one of these tests which enable the
user to understand the behaviour of a material under a continuous axial
load; from this test we obtain the stress-strain diagram [2]. In this work
we are working with samples of 1018 steel of 2.5 × 2.5 × 2.2 cm. and
they undergo compression test according to ASTM E-9 [21]. The tests
were performed with a speed ratio of 0.2 cm/s up to 90 MPa approx.
Since we are working on the elastic part of the diagram, therefore we
can apply Hooke's law:

=σ E ε· , (8)

where σ is the stress, E is the Young’s module of the material (200 GPa)
and ε is the dimensionless strain. We propose a similar equation to the
Hooke’s law to obtain a relation between the focal length and the stress:

=σ E K ξ· · , (9)

where K is a dimensionless coefficient proposed in this work and ξ is the
dimensionless value obtained in Eq. (7). The coefficient K is obtained
from the relation between the slopes of both graphs of interest: stress-
strain diagram and DIP plot.

2.3. Theoretical demonstration

The laser used in the present work has initial parameters such as
(initial intensity, beam waist and Rayleigh distance) enlisted by the
manufacturer in its handbook [22].

In Fig. 1 we plot Eqs. (1) and (2) substituting the results from Eq.
(7), the initial parameters of our laser and propagating formally a
Gaussian beam. Using analytical expressions for numerical calculations,
we show that the focal length increase is proportional to an increment
of the beam waist. We assume that ε∼f.

According to the Fresnel diffraction and a focal lens transmission
[23] we have:
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Fig. 1. Gaussian propagation: Intensity profile.
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