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A B S T R A C T

In this study, the Young’s modulus and Poisson’s ratio of Ni-Cr Alloy are measured using phase-shifted
reflective coherent gradient sensing (CGS) method. Three-point bending experiment is applied to obtain the
Young’s modulus by measuring the specimen out-of-plane displacement slopes. Bending experiment of a
circular plate with fixed edges loaded by a centric concentrated force is applied to obtain the specimen bending
stiffness. The Poisson’s ratio is then solved by substituting the bending stiffness into Young’s modulus. The
results show that the phase-shifted reflective CGS method is valid for measuring Young’s modulus and Poisson’s
ratio of metals and alloys. In addition, the reflective specimen surfaces are obtained with precision finishing
operations and the polishing parameters are optimized for CGS measurement. This method is more effective
than the reflecting film transfer method, which is widely used in previous studies.

1. Introduction

Young’s modulus and Poisson’s ratio are the most important elastic
parameters in mechanical analysis [1,2]. There are a large number of
literatures focusing on the measurement of these two parameters [3–
5]. The most popular method is measuring with strain gauge or strain
gauge rosette, which can be used to obtain the surface strain in
different directions [6,7]. However, strain gauges can only provide
the average strain value in a local area. The method fails when the
deformation is inhomogeneous, such as in the measurement of
inhomogeneous residual stresses or stress concentration factors [8–
12]. Another popular method is measuring with extensometer [13,14].
This method has high precision and is easy to operate. However, the
extensometer must be connected with the specimen, which is the vital
limitation of extensometer.

The most popular full-field and non-contact method to measure
Young’s modulus and Poisson’s ratio is digital image correlation (DIC),
which is widely used in many fields [15,16]. However, DIC method fails
in measuring small deformations because the accuracy of DIC method
is much lower than the accuracy of strain gauge or extensometer. The
high-accuracy two dimensional DIC measurement can reach a strain
accuracy of 75με, according to the latest literature [17]. However, there
are many interference methods to measure full-field deformations with
high accuracies, such as holographic interference [18], laser speckles
[19], electronic speckle pattern interferometry (ESPI) [20] and Moire
interferometry [21]. The displacement measurement accuracy of these

methods are submicron scale, which are equivalent to the laser
wavelength. However, all of these methods are sensitive to rigid
displacements. Therefore, non-vibrating environment is strongly re-
quired and the rigid displacement eliminating process is always
necessary for correct results. Moreover, by all of these methods above,
the specimen displacements are obtained directly with experiment
noises. The strain values are then obtained by numerical difference
method, which enlarges the experiment noises in measuring displace-
ment. Therefore, the specimen displacement field is better to be
obtained by a high accuracy, full-field and non-contact method which
is also insensitive to vibrations and can reduce the experiment noises.

CGS method is a full-field, real-time and non-contact interference
method [22], which is insensitive to vibration and able to provide the
full-field slopes of reflective surfaces [23–27]. There is no need to
eliminate rigid displacement for CGS method. In addition, the out-of-
plane displacements of reflective surfaces can be obtained by numerical
integration method, which can reduce the experiment noises in
measuring slopes. In previous studies, the reflective CGS method was
used to measure the slopes of thin films [28,29] and the crack tip K-
dominance of metals [30,31]. However except for these applications,
there are few applications of reflective CGS method because it is hard to
obtain optical flat reflective surfaces.

In this work, the Young’s modulus and Poisson’s ratio of Ni-Cr Alloy
are measured using reflective CGS method. The measurement accuracy
is improved significantly by using the phase shifting technology in CGS
method, which is proposed by the authors in previous study [32].
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There-point bending experiment is applied to obtain the Young’s
modulus by measuring the specimen out-of-plane displacement slopes.
Bending experiment of a circular plate with fixed edges loaded by a
centric concentrated force is applied to obtain the specimen bending
stiffness. The Poisson’s ratio is then solved by substituting the bending
stiffness into Young’s modulus. The results show that the phase-shifted
reflective CGS method is valid for measuring Young’s modulus and
Poisson’s ratio of metals and alloys.

2. Theory and Methodology

Fig. 1 shows the principle of reflective CGS method. A collimated
parallel beam is reflected from the specimen, carrying the out-of-plane
deformation information of specimen. Then the reflected beam pass
through the first Ronchi grating (G1). The yellow beam represents the
diffracted beam with +1 order, while the blue beam represents the
diffracted beam with 0 order. Both diffracted beams hit the second
grating G2, which is identical with G1. The distance between two
gratings is Δ, the first order diffraction angle of the grating is φ.
Therefore, the shearing displacement of the two beams on G2 is ε,
which is determined by Eq. (1).

ε φ φ= Δ∙ tan ≈ Δ∙ (1)

In this study, the grating frequency is f = 40 lines/mm, the laser
wavelength is λ=532 nm, so the first order diffraction angle of the
grating is 1.22°, which can be calculated via Eq. (2).

φ λ p λ f=sin / ≈ ∙−1 (2)

where p is the grating pitch. The diffracted beams on the right side of
G2 are named with E b

0,1, E y
1,0. The superscript ‘b’ represents the blue

beam, while ‘y’ represents the yellow beam. The subscripts represent
the beam orders diffracted by two gratings. The direction and intensity
of E b

0,1 and E y
1,0 are the same, while the light paths of the two beams are

different. Therefore, there are interference fringes on the right side of
G2, which are schematically shown as the green area in Fig. 1. The
intensity of point P on the screen depends on the light path difference
between the two beams reflected from point A x y( , ) and B x y ε( , + ). In
the reflection mode, the light path difference between the two beams is
determined by the specimen surface.

δS x y ε δS x y δw( , + )− ( , ) = 2 (3)

where δS x y ε( , + ) and δS x y( , ) are the light paths of the two reflected
beams, δw is the out-of-plane deformation difference between point A
and B. In addition, the fringe order N is determined by the following
interference equation:

δS x y ε δS x y Nλ( , + )− ( , )= (4)

Divide both sides of Eqs. (3) and (4) with ε and combine with Eqs.
(1) and (2):

δw
ε

Np=
2Δ (5)

Eq. (5) becomes into a differential equation when the two beam
shearing displacement is close to zero:

δw
ε

w
y

Nplim = ∂
∂

=
2Δε→0 (6)

As can be seen from Eq. (6), the interference fringes of reflective
CGS method represent the out-of-plane displacement gradient (slope)
contours.

Kramer et. al. developed a temporal phase shifting method in CGS
using lateral translation of the second grating for static measurements
[34,35]. In previous work [32], phase shifting can be introduced by
simply rotating a plane-parallel plate between the two gratings, which
has been applied to the spatially-phase-shifted method for dynamic
measurement [36]. As shown in Fig. 2, there is a plane-parallel plate
between two gratings, which is the phase shifter in this work.

The red and green beams represent two reflection beams from the
specimen surface (point A and B). The light path of the two beams can
be determined by Eq. (7):
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In addition, we have,

Fig. 1. The principle of CGS method (G1 and G2 are two Ronchi gratings).

Fig. 2. The principle of plane-parallel plate rotating method.

Fig. 3. The principle of reflective film transferring method: the film transfer and remove
process.

Fig. 4. Three specimen groups obtained by different methods.
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